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SuMMAFtY 

The primary purpose of the present study is the reevaluation of the hot- 
wire anemometer amplitude data contained in the 1977 subsonic flat plate 
acoustic-boundary layer instability investigation report of P. J. Shapiro 
entitled, "The Influence of Sound Upon Laminar Boundary Layer Instability." 
As shown here, the low-Reynolds number boundary layer disturbance data were 
misinterpreted and the present effort was made to improve the corresponding 
disturbance growth rate curves. The data show a standing wave pattern along 
the plate and it is known that this can be satisfactorily explained as being 
due to the superposition of the free-stream sound waves and the laminar boundary 
layer instability Tollmien-Schlichting (TS) waves. To extract the TS wave 
amplitude and phase velocity information the data were modeled as the sum 
of acoustic waves and a wave representing the TS wave. Using the free-stream 
disturbance data, the sound field was modeled by a primary downstream trav- 
eling sound wave, a weak reflected upstream traveling wave, and nonpropagating 
"noise" terms representing possible decaying evanescent sound fields at each 
end of the test section. The amplitude and phase velocity of the TS wave 
were then adjusted so that the total signal reasonably matched the amplitude 
and phase angle from hot-wire data along the laminar boundary layer on the 
plate. 

Except for the region upstream of the rapid increase in boundary layer 
disturbance growth, the resulting phase velocity variation was within 2% of 
the theoretical two-dimensional TS phase speed. In the upstream region the 
speeds were about 10% higher than the flat plate values, but the increase is 
qualitatively consistent with the adverse pressure gradient existing in this 
region. The TS wave amplitude at the earliest measurement station was 0.25 
times the sound field amplitude near the leading edge. Shapiro's TS growth 
rate curves showed growth ahead of the theoretical flat plate stability neutral 
point, and the revised rates show growth occurring even further upstream. 
It appears that the premature growth is due to the adverse pressure.gradient 
created by the shape of the plate. One of the purposes of Shapiro's investi- 
gation was to determine if the sound could be affecting TS wave growth along 
the plate, but the pressure gradient has prevented such a determination. 
Comparison of the measured pressure distribution with published theoretical 
distributions for plate leading edge shapes similar to Shapiro's shows con- 
siderable disagreement. Obviously, it would be desirable to reduce the 
pressure gradients in future experiments. 

Acoustic excitation experiments are important to the boundary layer 
transition problem because sound pervades the flow environment of aircraft 
and wind tunnels. But these experiments are difficult ones to satisfactorily 
conduct because of the problem of establishing a controlled acoustic field; 
a complicated wave field is invariably present. Sound field measurements are 
an important part of tunnel experiments which use sound. Some of the basic 
elements of sound propagation in ducts have been reviewed in the present report. 

Shapiro did expend a considerable effort monitoring and altering the 
test section sound field. The acoustic data presented in the report, however, 
appears to have been taken with the flat plate absent. Because the plate 
would effectively divide the test section into two channels, the presence of 
the plate would likely affect the sound field for the higher of the two 
frequencies used in the investigation because of changes in the modal 
characteristics of the sound passages. For the lower frequency case (500 Hz), 
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the condition modeled in the present work, the presence of the plate may not 
have significantly altered the sound field. Study of the acoustic stability 
experimental literature reveals that researchers need to be more diligent in 
reporting tunnel size and model location so that readers can better assess 
the standing wave situation. 

iii 



TABLE OF CONTENTS 

Page 

SUMMARY............................... ii 

INTRODUCTION '. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

ADDITIONAL BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Standing Waves and Data Fairing ................ 4 
Other Sound-Stability Investigations .............. 5 

ASPECTS OF TOLLMIEN-SCHLICHTING AND ACOUSTIC WAVE INTERFERENCE . . . 16 

MODEL OF ACOUSTIC FIELD AN'D TS WAVES . . . . . . . . . . . . . . . . 22 

Acoustic Model of MIT Test Section . . . . . . . . . . . . . . . 23 

MIT tunnel and preliminary acoustic measurements _~.- * - * - * 24 
Effects of plate ........ .- ............. 26 
Assessment of acoustic situation ............. 27 
Mathematical model .................... 28 
The 1,O mode issue .................... 30 

Modeling of Tollmien-Schlichting Waves . . . . . . . . . ., . . . 34 

Tollmien-Schlichting Wave Amplification Rates and Phase Speeds . 35 

Procedure for TS wave amplitude determination . . . . . . . 35 
Procedure for determination of phase speed and wave number. 38 
Procedure for determination of $1 and_._@3 . . . . . . . . 38 
Comparisons of measured and modeled values of A and 0 . . . 39 
TS wave amplitude growth and growth rate results . . . . . 42 
Phase velocity and wave number results . . . . . . . . . . 47 

CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . 48 

APPENDIX ELEMENTS OF SOUND PROPAGATION IN DUCTS . . . . . . . . . . 50 

Plane Progressive Waves .................... 50 
Standing Waves ......................... 52 
Reflections From an Open-Ended Duct .............. 53 
Transverse Modes ........................ 58 
Other Standing Waves ...................... 63 
Attenuation ........ .'. ............... 64 
Effects of Flow ........................ 69 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

FIGURES............................... 76 

iv 



INTRODUCTION 

The laminar boundary layer is a rather discriminating listener. Sounds 
which it rejects are quashed with little more than a ripple. But those it 
finds mellifluous are accepted with waves of enthusiasm which soon burst into 
turbulent pandemonium. Boundary layer transition--what a fascinating, fickle, 
unpredictable, and important fluid phenomenon it is. And indeed, *sound often 
plays an important role in the process. In fact,' it is not unusual to find 
that in acoustic-transition experiments the location of transition on simple 
models can be controlled using the sound from a loudspeaker (e.g., refs. 1 and 
2) l Sound is residually present in low-speed wind tunnels, is prominently 
present in the form of engine noise in subsonic flight, and, in the form of 
noise radiated from the turbulent nozzle boundary layers, is the predominant 
disturbance in supersonic wind tunnels. Only in supersonic flight are there 
laminar boundary layers in regions out of the reach of sound--and these regions 
are also generally out of the reach of the experimenters. It is no wonder, 
then, that the acoustic-transition problem has attracted and fascinated the 
researcher. It has certainly challenged and frustrated him as well as the 
designer of wind tunnels and laminar flow control aircraft. 

Tollmien-Schlichting boundary layer instability waves (TS waves) and their 
amplification frequently form one of the early stages of the boundary layer 
transition process. It is known that when a moderate acoustic field is present 
the existence of the TS waves is intimately related to the field. But while the 
behavior of TS waves in the absence of sound waves can be calculated, it is 
not entirely understood just how a sound field interacts with a boundary layer 
to produce TS waves and to what extent, if any, the sound field subsequently 
affects these waves. Does the sound field simply set up the initial conditions 
of the TS waves? Does the sound field alter the growth rate of the TS waves 
by feeding energy into the waves as they travel along the boundary layer? In 
the experimental investigation of Shapiro (ref. 3) an attempt was made to con- 
front these issues. 

Using a low-speed wind tunnel Shapiro studied the effects of acoustic 
excitation on the Tollmien-Schlichting waves. In the experiment the subsonic 
flat plate laminar boundary layer was excited acoustically by the sound field 
from a loudspeaker located upstream of the tunnel test section. Shapiro found 
that Tollmien-Schlichting instability waves were generated with the same 
frequency as the excitation sound field. Using a hot-wire anemometer, the TS 
wave amplitudes and frequencies were measured and so was the phase angle dif- 
ference between the anemometer signal and the reference signal fed to the loud- 
speaker. He concluded that the excited TS waves matched stability theory 
results well in most respects and that the acoustic excitation merely generated 
a larger initial wave amplitude. For excitation levels larger than the 
residual tunnel disturbances, Shapiro concluded that the initial amplitude 
was constant ahead of Branch I of the neutral curve (that is, ahead of the 
point where TS wave amplification is predicted to occur), and that this ampli- 
tude matched the disturbance velocity amplitude of the sound wave. Inasmuch 
as the TS waves are supposed to decay ahead of Branch I, the constant amplitude 
condition is not consistent with flat plate stability theory. The conclusion 
is also contradicted by his experimentally determined amplification rate curves, 
for these show wave growth ahead of Branch I. 

There is a problem here concerning the absence of upstream TS wave ampli- 
tude decay. In Shapiro's experiments the boundary layer ahead of Branch I was 



in an adverse pressure gradient region. Boundary layers are less stable under 
such conditions and an absence of wave decay would not be an unusual feature. 
The TS wave amplitude behavior could-therefore, in a vague sense, be considered 
to match the theory (but without a detailed analysis of the effects of the 
pressure gradient the extent of the compliance with theory cannot be accurately 
assessed). But one also has to face Shapiro's other contention that the TS 
velocity fluctuation amplitude matched the sound disturbance amplitude ahead 
of Branch I. The important question is: In the absence of an adverse pressure 
gradient, would the TS wave amplitude still have matched the sound field ampli- 
tude along the plate? Shapiro's answer would appear to be yes because he stated 
that the TS amplitude remained constant simply because the excitation remained 
constant as the wave progressed down the plate. Such behavior does not match 
stability theory in most respects but instead represents a significant departure. 
The contentions are contradictory. 

The problem stems from the fact that with the sound field present a 
standing wave pattern with periodic spatial oscillations was always observed 
along the plate. Shapiro did not identify the cause of the wave pattern, but 
it is reasonable to believe, and supporting evidence will be offered, that the 
pattern was simply the result of the interference between the traveling sound 
and TS waves. Waves having the same frequency but different speeds produce a 
standing wave pattern when traveling together as long as their directions are 
not orthogonal. In fact, the concept of standing waves is usually introduced 
in textbooks by considering the case of waves with the same frequency traveling 
in the opposite direction. To obtain TS wave amplitude growth rates Shapiro 
faired curves through the oscillatory pattern. This is a natural, thing to do 
and it is likely that some of the ambiguity resulted from the difficulty in the 
subjective fairing process. It will be shown below that the fairing procedure 
is not correct. Upstream of Branch I a faired result represents one quantity 
and somewhere downstream of the Branch it represents another, and the two 
quantities do not join smoothly. Thus trying to fair smoothly no doubt was a 
frustrating task. When the amplitude of the TS wave is less than that of the 
sound wave, fairing does not give the TS wave strength. Consequently, in the 
upstream boundary layer region where the TS wave amplitude is still small, a 
reevaluation of the amplitude data is in order. As was previously indicated, 
there is a particular interest in the upstream region for it is not well under- 
stood just how acoustic waves are ingested by the boundary layer in the pro- 
duction and possible modification of TS waves. The purpose of this report is 
to present and compare with theory the amplification rates, phase velocities, 
and wave numbers of the Tollmien-Schlichting instability waves as determined 
from a reexamination of data presented in Shapiro's report. 

In the present report the acoustic and TS waves are represented by a 
mathematical model of traveling waves. The speed of the acoustic waves were 
taken as the speed of sound plus (or minus, depending on the wave direction) 
the free-stream speed of the fluid, and. the amplitude distribution was adjusted 
to match Shapiro's free-stream acoustic data. The amplitude and wave number 
of the TS wave were considered as unknowns, and when the acoustic and TS 
waves were summed, these two parameters were adjusted so that the total signal 
reasonably matched the data. The amplitude data were used to determine the 
TS wave amplitude behavior and the phase angle data were used to determine 
how the wave number varied. The wave speed was obtained from the frequency 
and wave number information. 

Stability experiments in which acoustic excitation is used require 



considerable development work if they are to be done carefully. Shapiro did 
a lot of development work in his investigation and it is not likely that there 
will be a rash of such experiments. His results are interesting and have 
already been cited in the literature. For example, Murdock (ref. 4) has 
compared his computational findings with Shapiro's experimental results. And 
a significant portion of the review article by Leehey (ref. 5) was devoted 
to Shapiro's work. The initial one-to-one ratio of the TS-to-sound wave 
amplitude was cited and TS wave amplitude growth rate curves were displayed. 
It is likely that Shapiro's report will continue to be frequently cited by 
stability and transition researchers, and the primary objective of the present 
effort was to recover more appropriate TS wave amplitude information from the 
data. 

The report is quite large for such a modest objective. It is inflated 
by such things as additional background information, discussion of aspects of 
wave interference, and a presentation of basic elements of sound propagation 
in ducts. These take up 60% of the report! The section on elements of duct 
acoustics is relegated to an appendix and is occasionally referred to in the 
section in which Shapiro's tunnel sound field is modeled. By and large this 
appendix may be useful only to those who have to work with tunnel acoustics 
for the first time. The final 20% of the report describes the precise details 
of the information extraction procedure and the resulting TS wave properties. 
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ADDITIONAL BACKGROUND 

Standing Waves and Data Fairing 

To show that it is reasonable to believe that the periodic standing wave 
pattern is due to acoustic-TS wave superposition, the measured wavelength can 
be compared with the expected wavelength for the interference phenomenon. The 
wavelength of the spatial oscillations in Shapiro's rms amplitude data was 
approximately 2 cm. The wavelength of the interference pattern can be estimated 
by considering the sum of two sinusoidal waves traveling in the x direction 
and having the same radian frequency w but different wave speeds, cl and c2. 
The respective wave numbers, defined by k = w/c, would therefore differ. 
Considering both waves to have unit amplitudes and using the trigonometric 
identity for the sum of two sine waves, the traveling wave sum is 

sin(klx-tit) + sin(k2x-wt) = 2 cos kl - k2 kl + k2 
2 x cos( 2 X -wt> (1) 

The rms value of such a signal is easily shown to be the standing wave given 
by /? lcos Kx , where K = (kl - k2)/2. 

+ 

Here the absolute value has been written 

instead of cos2 Kx. The wavelength for a sinusoidal function is 2n/k, and 
for the absolute valued function the wavelength is halved. Therefore, the 
wavelength of the resulting pattern is n/K. This quantity may be written in 
terms of the frequency f and the wave speeds as cp2/m2 - Cl) I. In the 

experiment f = 500 Hz. The free-stream velocity was Uo3 = 29 m/set, and a 
reasonable estimate for the TS wave speed is c 

4 
= uJ3. The velocity of the 

acoustic wave is 
in stationary air. c2 = Uo3 + a, where a = 344 m set is the speed of sound 

Using these quantities the estimated wavelength is 1.98 cm, 
a value which is quite close to the observed value. This is rather convincing 
evidence that the data are showing the acoustic-TS wave interference pattern. 
The present work was initiated after examining Shapiro's report and discovering, 
through wavelength amplitude comparison, the cause of the standing wave pattern. 

The effect of the data fairing procedure can be demonstrated by generalizing 
the above results to include non-unit amplitudes. Letting the variable ampli- 
tudes of the sound and TS waves be A (x) and Ats(x), respectively, the rms 
signal S(x) level can be shown to bz 

S(x) = [A$ + A&) + 2As(x)Ats(x)c~s~l 

where 8 is the phase angle given by 

8 = (kts - ks> x + Gts - +s 

The $ values are the initial phase angles at x = 0. The signal "s thus 
undergoes sinusoidal-like spatial oscillations, and in a data fairing procedure 
a curve would be plotted through the oscillations such that it would fall 
halfway between the local peaks and valleys. In Shapiro's experiment the 
peaks and valleys were close together and the amplitudes generally changed 
very little between a peak and a valley in the upstream region. Consequently 
As and Ats may be treated as locally constant between adjacent peaks and 

valleys, and since the co& varies from +1 to -1, adjacent local maximum 
and minimum values of s reduce to, respectively, 
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; = 
As t A 

ts 
max JF 

and 

As - A 
ts , A <A 

s. = fi 
ts- s 

ml" A 
ts - *s 

fi ' Ats > As 

Fairing amounts to averaging smax and smin and hence 

(4) 

(5) 

Equation (6) shows that a fairing of the rms signal gives the rms value of the 
acoustic wave or the TS wave, depending on which of the two has the greater 
amplitude. By fairing the data Shapiro was hoping to obtain TS wave growth 
information, but eq. (6) h s ows that this procedure would be valid only in the 
downstream region where the TS wave had been sufficiently amplified so that 
its amplitude exceeded the acoustic level. In the important upstream region 
where the TS wave amplitude was small, the fairing procedure was therefore 
improper. Fairing should have produced a level which matched the stream 
acoustic level. This is precisely what Shapiro found! The acoustic level 
was relatively constant in the upstream region, and one of Shapiro's con- 
clusions was that the TS wave amplitude was constant there. Shapiro also 
varied the acoustic level to see the effect on the TS level, and he also con- 
cluded that the initial TS ‘iave amplitude and the exciting acoustic velocity 
were proportional to one another, with a proportionality factor equal to one. 
This finding confirms the impropriety of the fairing technique upstream. 
Equations (4) and (5) show that in the upstream region 

A = 
ts - Smin) 

Thus a better procedure for determining Ats(x) would have been to have faired 
a curve through the maxima and another through the minima and used these faired 
values in eq. (7). I" terms of rms values, a procedure for determining TS 
wave results would be 

2 -E. 
max ml" ,A ts 5 As 

its = 
2 

s ts 
max Iill" , A >A 

2 ts s 

Other Sound-Stability Investigations 

Thomas and Lekoudis (ref. 6) were the first to publish the finding that 
the observed standing pattern in the Shapiro experiment was a wave superposition 
phenomenon. In their study they considered the superposition of a constant 
amplitude acoustic wave and a TS wave in which the amplitude and wave number 
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were computed from stability theory (with the amplitude adjusted so tllaC 
Ats/As = 1 at the location of Shapiro’s initial data station). The sign”1 
amplitude and phase were computed and compared with the data; the computxl 
results did show the spatial oscillatory behavior. They concluded that tllv 
only active interaction between the acoustic and TS fields was the settin): 
of the initial conditions for the TS wave by the sound wave. While this may 
indeed be the situation, their evidence does not support their conclusion 
and the case is yet to be made. Although it is not mentioned, their ampli- 
tude calculations show the normal TS wave decay and subsequent jirowth, but 
Shapiro’s data show no wave decay. The departure of data from stability 
theory is the thing one looks for in acoustic-stability experiments, for 
departures provide the key to understanding the acoustic interactions. ThUS 
it is essential that the amplitude departures he addressed before making con- 
elusions. Concerning the phase angles the authors do state that the apreencnt 
with the data is poorer. The calculations show a mean phase angle growth with 
distance which is much greater than that shown in the data. Therefore both 
computed results show departures from the experimental findings. Shapiro 
discussed pressure gradient effects, and it will be shown later in this rcpor~ 
that the absence of the TS wave decay may be due to the pressure gradient 
effects. It will also be sho%m later that the absence of 3 significant 
mean phase angle growth can likely be attributed to upstream propagating 
sound. 

Standing wave patterns resulting from the superposition of acoustic and 
instability waves have been found in experiments with free shear layers and 
with attached boundary layers. A standing pattern along a flat plate is 
clearly visible in the acoustic instability experiment of Mechel and Schilz 
(refs. 7, 8). Results on a body of revolution with the acoustic radiation 
perpendicular to the stream have been presented by Vlasov, Cinevskiy, and 
Karavosov (ref. 9), and the data suggest acoustic-TS wave interference. ThF 
rms output from a hot-wire anemometer held fixed in the boundary layer while 
the frequency of the radiation was changed showed an oscillatory, albeit 
erratic, variation with frequency. An oscillatory behavior is consistent 
with the interference hypothesis because as the frequency is varied the phase 
angle changes (see eq. 3). A similar result from a flat-plate experiment 
is displayed in the report of Polyakov (ref. 2). 

In the classic work of Schubauer and Skramstad (ref. 1)) in which pre- 
dictions of stability theory were experimentally confirmed for the first tine, 
the authors emphasized in their conclusions the possible importance of sound 
to the transition process. In the experiment they did do some exploratory 
and revelatory work with loudspeaker acoustic excitation before arriving at 
their vibrating ribbon technique of exciting TS waves. With the loudspeaker 
axis nearly collinear with the leading edge of their flat plate they found 
that the location of transition could be moved all around simply by changing 
the frequency and amplitude of the sound. ?iut in their quest for controlled 
excitation this technique was abandoned because the acoustic fields were 
always complicated ones. SO, while emphasizing the importance of sound they 
were also the forerunners, in effect, of conceding the difficulty of performing, 
acoustic-stability experiments. As will be reported later, a considerable 
portion of Shapiro’s efforts was spent measuring and tryi”): to control the 
sound field. 

Acoustic difficulties indeed plague researchers. Wells (ref. IO) varied 
the free-stream turbulence level conditions while observing the transition 
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location on the wall of his low-speed tunnel. Subsequently it was reported 
by Spangler and Wells (ref. 11) that acoustic standing waves had been present 
in the experiment. These were reduced by venting the downstream end of the 
test section to the atmosphere, and it was reported that while no change 
in the transition locations occurred, there was a significant reduction in 
the measured free-stream disturbance levels. Transition experiments were 
then conducted in which an acoustic field was set up by a siren placed up- 
stream of the nozzle entrance. Transition was detected with visual means 
using smoke. Four different fundamental frequencies were selected for the 
tests, but it was reported that the siren was imperfect and had several 
harmonics, some of which were as strong as the fundamental. The variation 
of transition Reynolds number with measured free-stream intensity was displayed 
for each of the four cases and marked differences did occur. No doubt 
standing waves still existed, and a troublesome aspect of the work is that 
the free-stream acoustic measurements were all taken at one location within 
the tunnel. Equations (2) and (3) show how the signal would change at a 
fixed distance when the frequency is varied.~ In eq. (3), since opposite- 
direction waves are considered, the sum rather than difference in wave numbers 
would be used. No tunnel dimensions are given; the authors force the reader 
to obtain the orj.ginal reports to obtain such basic information. 

Knapp and Roache (ref. 12) investigated transition and a few aspects of 
the TS waves on ogive nose cylinders aligned with the flow. Smoke was used 
for flow visualization and hot-wire data was also taken. A loudspeaker 
installed upstream of the nozzle provided acoustic excitation (reported to 
have a high first harmonic component). Tunnel dimensions are not given 
(this information is basic when acoustic fields are used and there is no 
excuse for not giving such simple facts); the reader must consult original 
documents to obtain this information and, presumably, information about the 
uniformity of the acoustic field. Spectral measurements were taken, with 
and without the sound, with a hot-wire fixed near the surface. Without the 
sound the spectra at various flow speeds showed a natural band of frequencies 
present (bandwidth of wave analyzer was not given). When the speaker frequency 
was set within the middle of this band a large peak at this frequency was 
reported to have occurred. As the speaker frequency was changed and the 
limits of the natural band approached, the amplitude of the wave analyzer 
output at the acoustic frequency was reported to decrease and more of the 
natural band to appear. No mention was made of occurrences of mean oscillations 
in the wire output as the frequency was changed, but any such occurrences 
may not have been considered particularly relevant to their study. 

There have, of course, been many other experimental investigations of the 
subsonic noise-transition phenomena. Stability considerations were an impor- 
tant part of the research efforts, but the emphasis was more on the transition 
process than on a detailed study of the TS waves themselves such as in Shapiro's 
experiments. Two of the more recent investigations have been by Barinov, 
et al. (ref. 13) and Bohn and Mangiarotty (ref. 14). In both investigations 
it was found that the dominant frequencies of the disturbances leading to 
transition were in the range of unstable frequencies according to stability 
theory. The latter investigation was conducted as part of a laminar flow 
control technology program and much of the motivation for acoustic-stability 
studies has come from such programs. Some of the early work on this problem 
was described by Penninger and Reed (ref. 15). Many additional references 
may be found in the survey of Bushnell and Tuttle (ref. 16) and in the report 
of Hefner and Bushnell (ref. 17). 
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A very interesting experiment and review has bee” reported by Kachanov, 
Kozlov, and Levchenko (ref. 18) concerning the generation of TS haves. In 
their low-speed flat-plate experiment a vibrating ribbon I~IX. used to generate 
a vortex street upstream of the plate. Amplitude and phase angle disturbance 
measurements were made using a hot-wire. With the ribbon parallel to the lplntv 
and the vortex perturbations passin g just slightly above the plate’s houndnry 
layer, no TS waves were generated in the boundary layer. Mhe” the pertur- 
bations were allowed to impinge directly on the leading edge, TS waves were 
generated. The plate was 1 cm thick and had a sharp leading edge with 
semielliptic contours and the hot-wire measurements were very detailed over 
a 10-15 mm wEion upstream and downstream of the leading edge. No 1’s wa”cs 
were generated when the ribbon was rotated 9Oo so that it was stretched 
perpendicular to the plate. In this arrangement there were no v pertur- 
bations (plate in x--z plane) in the incoming disturbances and based on this 
fact and other observations they concluded that the v fluctuations at the 
leading edge play a significant role in TS wave generation. From 2 review 
of their- own and other findings they further concluded that the same leadinp- 
edge v mechanism xas responsible for TS wave generation in the CDSES of 
vertical, acoustical, and model vibratory disturbances. They also expressed 
their belief that downstream of the leading ed.ge these types of disturbances 
did not feed energy into the TS waves. 

The belief that a sound field is most important at the leading edge or 
that sound does not affect the TS wave development downstream from the leading 
edge region has also been expressed by some researchers in the theoretical 
domain. In the analytic study by Wun,e,nr (ref. 19) two equations were del-tved 
from the linearized Yavier-Stokes equations. One governed the sound field and 
the other the fluctuating vorticity field. The latter was written in the 
form of an inhomogeneous Orr-Sommerfeld equation (the homogeneous version 
describes the TS wave behavior) which represented the generation by a soulId 
field of fluctuating vorticity and its convected diffusion and arrplification 
or decay by the boundary layer. For the two-dimensional case the acoustically 
induced vorticity source strength consisted of tvo terms, one proportional 
to the product of the acoustic pressure and the mea” shear, and the other 
term proportional to the product of the acoustic pressure transverse deriv- 
ative and the second derivative of the mean flow. Since both terms i~nvolved 
the transverse gradient of the mean flow, the vorticity production by 3 sound 
field only occurs in a boundary layer. The nondimensional wave numher, 
kc:(x), appeared in one term and its reciprocal appeared in the other. Rfcausc 
of the l/k&(x) term the acoustically induced vorticity source strength was 
considered to have the greatest concentration at the leading edge of a flat 
plate. Munpar also concluded that the vorti~city field would have two com- 
ponents, one propagating at the acoustic speed and the other at the TS wave 
speed. These two components would give rise to a” interference patter” and 
he cited the Schilz (ref. 8) experiment (Shapiro’s report had not bee” pub- 
lished) as suppol-ting evidence of this. (Nungar stated that the wavelength 
of the pattern would be proportional to the r.?ave number difference, but it 
should he the reciprocal of the difference). 

Miller and Callegari (ref. 20) examined the acoustic-stability problem 
by a numerical solution of the unsteady, compressible, two-dimensional, sccund 
order boundary layer equations (retaining terms of order l/Ae and 1/Re2). 
Inasmuch as compressible equations l<ere used, sound waves with finite speeds 
could propagate through the flow. The investigation was centered, according 
to the authors, on the study of the amplificatjon or damping of acoustical 
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disturbances propagated into the boundary layer (the Shapiro report was cited 
in their Introduction). The disturbance frequencies and the free-stream unit 
Reynolds number conditions were chosen, for the most part, to match those 
of the low-speed experiment of Spangier and Wells (ref. 11). The upstream 
velocity boundary condition was taken as the sum of the laminar Elasius 
profile and a temporal sinusoidal oscillation whose amplitude distribution 
across the layer was determined from a solution of the compressible analogue 
of the Orr-Sommerfeld stability equations (actually taken in the inviscid 
limit with the additional assumption of no temperature gradient in the mean 
flow--neutral stability conditions were selected). From a study of the be- 
havior of the disturbance speeds and of the variation of the longitudinal 
velocity fluctuation disturbance amplitude with downstream distance, Miller 
and Callegari concluded that the downstream disturbances in the boundary 
layer were TS waves which essentially behaved according to linear stability 
theory. Thus, it was concluded, the response of a boundary layer to acoustic 
vibrations is similar to the response to other disturbances. 

There are some curious and troublesome aspects of the results of Miller 
and Callegari. The most important of these is the lack of any discussion of 
TS-acoustic wave interference phenomenon. Such interference would be expected 
to occur, and the absence of discussion of the matter implies that their 
calculations did not show any wave interference. This signifies that perhaps 
something is wrong with their results. A closer examination shows that, in 
contrast to their statements, in some cases their results do not appear to be 
consistent with linear stability theory. In the paragraphs which follow, a 
disproportionately large portion of the present section will be devoted to 
discussion of some of the findings of Miller and Callegari. Readers may 
wish to skip this and may do so by jumping to the last review of the section, 
that of Murdock's paper (ref. 4), which begins on page 14. 

As just mentioned, a troublesome aspect of the Miller and Callegari study 
is that, in contrast to their statements, in some cases their results do not 
appear to be consistent with stability theory. This issue will be considered 
first. Their first result is a figure which shows three amplitude-time histories 
at a given downstream distance and height in the boundary layer for the cases 
of disturbance frequencies of 27, 43, and 150 Fz, respectively. They all had 
equal upstream initial amplitudes, and the downstream signals are seen to be 
unequal. The figure shows that after about one cycle the oscillations became 
nearly sinusoidal. Without a detailed integration of boundary layer stability 
growth rates from the initial to final stations, it is not possible to ac- 
curately assess whether the results are actually in accordance with stability 
theory. For example, the 43 Hz signal amplitude nearly matches the upstream 
initial amplitude and the authors state that the signal appears to be 
neutrally stable. However, according to stability theory the station is well 
within the unstable region. In their next figure (fig. 4) it is possible 
to make such an assessment. For a given unit Reynolds number of 7.94 X lo5 
per meter (2.42 X 105 per ft), the temporal signal is displayed at the three 
downstream distances of 2.44 m (8 ft), 3.66 m (12 ft), and 4.88 m (16 ft) for 
the case of the 27 Hz disturbance. The signal amplitudes diminish with in- 
crease in distance, and this does not appear to be in accordance with stabil- 
ity theory. This is established with the aid of a flat plate boundary layer 
stability diagram of nondimensional frequency vs. displacement thickness 
shown in Obremski, Morkovin, and Landahl (ref. 21, fig. 1Oj). The displacement 
thickness Reynolds numbers at the three locations are, respectively, 2393, 
2931, and 3385 (using Re6* = 1.72 &?). To use the stability diagram of 
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reference 21, the nondimensional frequency defined by 21Tfv/UL must be 
determined. Assuming air at a temperature of 21.1' C (70' F): the kinematic 
viscosity may be taken as 1.47 X 10B5 m2/sec (1.58 X 10D4 ft2/sec) and the 
stream velocity and nondimensional frequency become, respectively, 11.68 m/set 
(38.13 ft/sec) and 1.83 X 10m5. For this frequency the unstable Reynolds 
number range may be estimated from ref. 21 to be from 1840 to 4150 (+ 300? - 
determined from a small figure). Therefore, the three stations were all 
within the unstable region and the disturbance amplitude should have been 
increasing with increase in distance. The opposite trend was found by Miller 
and Callegari although they indicated that the results were satisfactory. 

In their next case similar computations were performed for a 150 Hz signal 
and the results were displayed for downstream stations of 0.61 m (2 ft), 
1.83 m (6 ft), and 3.05 m (10 ft). The amplitudes for the two most down- 
stream stations were greatly diminished and this is consistent with the fact 
(using ref. 21) that the stations were downstream of the unstable region. 
In another positive check of their computations, Miller and Callegari com- 
pared amplitude vs. Reynolds number results with those of Murdock (refs. 22 
and 23). In Murdock's investigation the unsteady, two-dimensional flow over 
a flat plate was studied, but the flow was considered incompressible. The 
initial velocity condition (at Re = 105) was taken as the sum of the Blasius 
profile and an Orr-Sommerfeld dis?!urbance. Since the flow was incompressible 
the disturbance simulated conditions downstream of a vibrating ribbon (the 
ribbon is the usual way TS waves are generated in boundary layer experiments). 
Uis numerical results were in good agreement with stability theory. In the 
plot of amplitude vs. Reynolds number, Miller and Callegari's results were 
in fair agreement with Murdock's. 

In a final test, Miller and Callegari made a rough determination of the 
neutral point for the case of a 25 Hz signal in a stream with a unit Reynolds 
number of 1.97 X 105 per meter (actually given in both the text and a figure 
as 0.6 x lo5 per foot). This was done by plotting the signal output at a 
given instant of time against Reg, and fairing curves through the positive 
and the negative peaks (actually, for a more accurate fairing two output 
curves taken at times such that they were nearly 1800 out of phase were 
plotted). These faired curves showed that the signal amplitudes reached a 
minimum at a Reynolds number near the indicated theoretical neutral value 
of approximately 1130. A problem arises concerning the theoretical neutral 
point Reynolds number. Again taking the above value of kinematic viscosity 
for air, the resulting stream velocity is found to be 2.90 m/set (9.50 ft/sec) 
and the nondimensional frequency parameter becomes 2.76 X 10s4. From 
figure 1Oj of reference 21 one finds that for this frequency condition the 
flow is completely stable--there are no neutral conditions. So, something 
is wrong somewhere. There is another troublesome aspect of these results. 
The expected wavelength of a TS wave can be estimated by taking the wave 
speed to be 0.3Uoo (a reasonable value). For a 25 Hz signal this wavelength 
is 3.5 cm (1.4 in). Using their given unit Reynolds number and their plot 
of signal amplitude vs. Re the average wavelength of Miller and Callegari's 
disturbance can be shown t$*bG 61 cm (24 in), a length which is 17 times 
the expected wavelength of a TS wave. A sound wave would have a wavelength 
of nearly 14 m (45 ft). 

Concerning the sound wave, the initial longitudinal velocity fluctuation 
profile (at Re values of 104 to 105) would not appear to be a very natural 
one. For plang waves propagating downstream the sound amplitude would be 
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rather uniform in the free-stream and would diminish to zero within its own 
acoustic boundary layer near the wall. But the initial condition used by 
Miller and Callegari has a disturbance profile similar to that of a TS wave. 
This profile has a maximum amplitude near y/6 = 0.2, decays to zero ampli- 
tude in the outer portion of the boundary layer near y/6 = 0.7, and finally 
increases again to a weak local maximum near y = 6 before beginning a slow 
asymptotic decay towards zero well outside of the boundary layer. In a very 
crude sense, the very long wavelength sound wave is being driven by two out 
of phase pistons located near y/6 = 0.2 and 0.7, and oscillating in an in- 
finite baffle with, respectively, large and smallamplitudes. It is impor- 
tant to know how such a nonuniform sound wave propagates through the boundary 
layer. It is reasonable to expect that the acoustic amplitude distribution 
would tend toward a uniform one outside the acoustic boundary layer and 
consequently the peak amplitude should diminish as signal spreading occurs 
with increase in downstream distance. Certainly the zero amplitude gap would 
begin to be filled. There is some evidence that this was happening; Miller 
and Callegari show disturbance profiles for an initial condition and one 
slightly downstream, and the latter shows that the amplitude in the gap is 
no longer zero. It would be of interest to know the relative amplitudes of 
the TS and sound waves just downstream of the initial station. Are they 
nearly equal? If so, there would be significant signal modulation due to the 
interference of the two waves because such modulation is greatest when the 
signals have equal strength. The wavelength of the interference pattern can 
be estimated to be (using eq. (1) with wavespeeds again taken as c = l/3 uo3 
and c = a + U > from 2 to 14 cm for the frequencies from 150 to 2sSHz. 
These ZavelengtEs are quite close to the wavelengths of the TS waves themselves 
If the waves are initially of equal strength, then it is easy to envision 
downstream conditions where the decaying sound wave amplitude could again 
equal the TS wave amplitude or where the amplitude could be dominated by or 
could dominate the TS wave amplitude. Certainly the sound wave would dominate 
the TS wave at the zero point near y/6 = 0.7, but just above and below this 
point the situation could be reversed. 

It is also possible that the peak near y/6 = 0.2 could have been inside 
the acoustic boundary layer at the upstream boundary. If this were the case, 
the peak sound amplitude would undergo a decay due to viscous effects just 
downstream of the initial point. It will be shown later in the report that 
the ratio of the acoustic boundary layer thickness to the laminar boundary 
layer thickness can be taken as 0.175 /Uco/fx, and hence the ratio of the 
acoustic boundary layer thickness to the peak disturbance height can be 
estimated to be 0.875 /LJm/fx. The distance to the initial boundary station 
is not often specified by Miller and Callegari. For the figure in which the 
27, 43, and 150 Hz signals were displayed, the nondimensional initial x 
value was given as 0.025. The reference length was not given, but if it is 
the same as it was for their test case in which the neutral Reynolds number 
point was determined, the value is 3.66 m (12 ft). This would give x = 9.14 cm 
(3.6 in), which corresponds to Re = 7.26 x lC4. With this value for x, 
the ratios of acoustic boundary th%kness to the initial peak disturbance 
height are 1.9, 1.5 and 0.81 for, respectively, the frequencies of 27, 43, and 
150 Hz. Consequently, for these conditions perhaps only in the 150 Hz case 
would the peak disturbance have initially been outside of the acoustic boundary 
layer. 

The situation holds the potential of interesting TS-acoustic wave 
interference phenomena. Significant interference would not occur if either 
wave were dominant. Only the sound field could dominate completely across 

11 



the boundary layer, but in this case all of the computed results would have 
to be explained in terms of sound wave rather than TS wave behavior. TS 
waves could dominate the interior portion of the boundary layer, but as 
mentioned above, there would always be a region in the outer half of the 
boundary layer where the TS wave has a zero amplitude (longitudinal velocity 
component) and would be dominated by the sound wave. Thus, there will 
always be outer regions where significant interference occurs when the 
boundary layer is TS-wave dominated. It appears that most of the results 
in the Miller and Callegari report were for locations rather near to the 
wall, but it is impossible to tell for sure because not enough information 
is given to untangle the dimensionless heights given (in some cases the usual 
Rlasius variable was provided). 

In terms of acoustic wavelengths, the longitudinal domain of the numer- 
ical calculations ranged from approximately 1.3A for the 150 Hz case to 
0.4X for the 27 Hz study. Since the TS wavelength would be about l/100 
of the acoustic wavelength for the conditions of their study, it would seem 
plausible that plots of signal amplitude vs. distance for a given time should 
have clearly revealed the presence of the two signals as long as the ampli- 
tude of the sound wave was comparable to or greater than that of the TS wave. 
But the authors make no report of seeing two waves within the boundary layer. 
And, as discussed above, in the one figure shown to the reader of amplitude 
vs. distance, the wavelength is neither that of a TS nor a sound wave (ap- 
proximately 20 times the former and l/20 of the latter). The modeling pro- 
cedure may in some manner have suppressed the dual wave behavior. Further- 
more, Miller and Callegari reported initiating an investigation to determine 
a wave propagation speed inside the boundary layer. Had the computations 
shown the existence of the two waves traveling within the boundary layer it 
would seem unlikely that the authors would have tried to determine a single 
speed. (But a reasonable assumption would have been that both sound and TS 
waves were propagating, and propagating at significantly different speeds, 
and a search for a single speed at a given height within the boundary layer 
does seem a little strange). No information about their velocity deter- 
mination procedure was given, but the result was displayed in the form 
of a curve of speed vs. height. Outside of the boundary layer the speed was 
found to match the speed of the sound wave, which would be about 30 Uo3. 
but inside the layer it dropped to about 4 UC0 at y/6 = 0.9 and then de- 
creased slowly to about 2 Um at the wall (the graph has not been drawn 
correctly near the origin, so the proper magnitude of the speed is not clear). 
The fact that the speed inside the boundary layer was found to be of the 
order of the free-stream velocity was taken as evidence that the wave in the 
layer was a TS wave. Since the speed of unstable TS waves does not exceed 
0.4 urn, and for the conditions given the particular wave speed can be esti- 
mated at 0.29 UC0 using figure 13j of reference 21, a speed of two to four 
times the stream velocity should have been identified as unusual. An obvious 
explanation is that unusual results should be expected when a single speed 
is forced upon a two-speed situation. But it also raises the question of 
whether the model was in fact showing two-wave type behavior. If both types 
of waves were present, as long as the amplitude of the TS wave was signifi- 
cantly greater or less than that of the sound wave, it should have been pos- 
sible to accurately determine the TS wave velocity by plotting amplitude vs. 
distance for different times and tracking the TS signal. Such a speed should 
not have been 2 Uoo inside the layer and jumped to 30 Uo at the edge of the 
boundary layer. If the authors did use this wave-following technique, then 
it was a crazy hybrid sort of wave that they were following and something is 
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wrong with the modeling. Perhaps their code generated a BS wave (Bad Speed 
wave) rather than a TS wave. And what'happened at the height where the TS 
wave amplitude should have gone to zero? Only the sound signal should have 
remained and its speed would still be at 30 U, , not 4 Urn. There is another 
possible explanation for the unusual result, although it does not answer the 
problem just raised (the explanation of this problem could be that the speed 
determinations were only at a few heights in the boundary layer--none of which were 
at the TS zero point--and results faired). Miller and Callegari were apparently 
looking for single speeds, and a simple way of determining a wave speed, which 
would be accurate with only one wave present, would be to determine the time 
shift At between the sinusoidal time signatures taken from two stations 
a small distance Ax apart in the downstream direction. The wave velocity 
would simply be Ax/At (a small Ax is used to make certain that the same 
particular time cycle is being tracked). A convenient feature of the signal 
to track is the time when the amplitude goes through zero. For a single wave 
the zero tracking procedure is valid, but when two waves with different speeds 
are present strange results can occur. One result is easily demonstrated 
by considering two traveling sinusoidal waves with equal amplitudes. Equation 
(1) is appropriate for this case, and it is easily shown that the signal travels 
with a constant phase velocity of 2 c1c2/(c1 + c2>. If, as before, 

c1 = Cts = Uo3/3 is the TS speed and c2 = cs = a + Uoo is the speed of the 

sound wave, the signal speed for low Mach number flow becomes = 2/3 u,. 
Obviously, such a speed is neither TS nor sound speed. If the two wave ampli- 
tudes are not equal, then the result depends on their amplitude ratio and 
upon x. 

To demonstrate results which can be obtained with the method, the signal 
speed was determined by tracking a zero crossing from a signal given by the 
sum of two traveling sinusoidal waves A ts sin(kts x-wt) -t As sin(ks x-wt). 

This was done for a number of different ratios of A /A 
tt* 

(10m4, 10m3, 10 -2 

.l, .2, .3, .5, 1, 2, 10, 100). Conditions approxima inE those of the Millir 
and Callegari numerical computations were used. The frequency was 27 Hz, 
a = 344 m/set, and Uo3 = 10.06 m/set (33.00 ft/sec--the speed for the Miller 
and Callegari calculations was probably near 11.7 m/set). The wave numbers 
were obtained using the TS and sound wave speeds given above. In trying to 
visualize the sum of the two signals it is helpful to keep in mind the fact 
that the speed of the sound wave is approximately 100 times greater than the 
TS wave speed and that its wavelength is correspondingly 100 times greater 
(13.10 m vs. 12.4 cm). The Miller and Callegari calculations were for 
x = 3.66 m (12 ft) and this distance was used here, along with other values. 
The 3.66 m distance results are not directly comparable to the Miller and 
Callegari computer results because the initial phase angles were no doubt 
different. At a given distance the time of the first zero crossing was 
determined. The stations were then moved slightly downstream and the time of 
the first zero crossing was again determined. The At time increment was 
then obtained from the corresponding time difference, and the velocity was 
calculated from Ax/At. Three different Ax downstream increments were used 
in this calculation; 0.15 cm (10.060 in), 0.61 cm (0.290 in), and 1.22 cm 
(0.480 in). The results showed that for A /A < 0.001 the signal speed 
was within 10% of the sound wave speed (354tg/s&y and had little dependence 
on x or Ax. Likewise, for A /A > 10, the speed was within 10% of the 
TS wave (3.35 m/set> and varied $?ttaewith x or Ax. With A /A = 1 
the speed agreed with the theoretical value of a constant 6.64 &$seg. For 
amplitude ratios between these conditions the results were greatly dependent 

13 



upon x. For 0.01 < A /A < 1, as x increased the speed changed from positive 
to negative values eve$haff TS wavelength, and the influence of Ax was 
quite significant. For 1 < A /A < 2 the speed oscillated with increase 
in x, but it remained positivgsan8 1 ess than the 6.64 m/set value. But in 
these strange results there are very many x stations for which the speed 
variation with amplitude ratio could conceivably give a speed variation with 
height which would roughly match that found by Miller and Callegari. In the 
free-stream Ats << As, and a signal speed of the sound wave would be found. 

If at x = 3.66 m (12 ft), for example, if the value of A /A 
a value of 0.1 throughout most of the boundary layer, the EteEmiLZpP,$Z 
speed would have been nearly 2 Um within the region. The point of all of 
this is that if the authors happened to have used this method, the unusual 
speed results could be an indication that TS and sound waves were propagating 
in the boundary layer after all and the speeds were not of BS waves (but 
there remains the wavelength problem). Use of the compressible equations 
allows a more realistic simulation of the acoustic-stability problem, and 
additional work is needed. 

The final study to be discussed is that of Murdock (ref. 4). The problem 
studied was the interaction of a plane sound wave with a Blasius boundary layer 
in incompressible flow. Because of the incompressibility the propagating 
nature of the sound wave was not present and the problem became one of 
sinusoidally oscillating flow over a flat plate. This could also be considered 
appropriate for the practical case of sound wavelength large compared to TS 
wavelength. The equations numerically solved were the parabolized vorticity 
equations which Murdock had previously used in the vibrating ribbon boundary 
layer stability study (refs. 22 and 23). In that study (which was briefly de- 
scribed earlier in the present report) these equations were found to satis- 
factorily describe TS wave behavior. For the sound interaction problem the 
boundary conditions were changed. The free-stream was taken as the sum of 
uniform flow plus a small oscillating perturbation. Two different upstream 
boundary conditions were used in the study and were obtained from the unsteady 
boundary layer solutions of Illingworth (ref. 24). For small q = ox/u 
the solution for the x-component of the velocity was the sum of the Blagius 
profile and an unsteady flow which grew in thickness at the same rate as the 
Blasius boundary layer and was in phase with the free-stream oscillations. 
For q>l the unsteady component which was added to the Blasius profile 
did not grow in thickness with x and there was a phase shift across the 
region. This unsteady shear region is what is called the acoustic boundary 
layer in the present report. The upstream boundary conditions thus provide 
rather realistic conditions for the sound wave perturbations. For a given 
frequency, small q conditions are appropriate very near the leading edge, 
and 4'1 conditions are for regions away from the leading edge region. 
For most of the study Murdock used a nondimensional frequency parameter 
LLhrlu; value of 5.6 x 10m5 in order to match the conditions in Shapiro's 
experimental investigation. 

Both boundary conditions were separately applied at different positions 
along the plate and TS waves were always generated at the boundary. Plots of 
the variation of the Fourier amplitude of the signal along the plate (which are 
equivalent to plots of fi times the rms value of the signal) clearly showed 
the TS-sound wave interference patterns, and these were appropriately inter- 
preted by Murdock to obtain the TS wave amplitude behavior. Murdock computed 
conditions down to the neutral point, and in all cases it was found that the TS 
wave amplitude decayed according to linear stability theory. He thus concluded 
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that there is no continuous flow of energy into the TS wave along the boundary 
layer. Since the computations showed no interaction between the sound field 
and the TS wave, the TS wave must be generated very locally at the leading 
edge region (or possibly, under different circumstances, locally at some 
downstream location). 

Murdock also applied the small q condition at locations progressively 
closer to the leading edge while computing the ratio of the neutral point 
amplitude to the initial point amplitude (all at a constant Rey value of 196). 
Computational costs limited the upstream location to a value of Re = 1 X 104, 
and when he extrapolated his results to Re = 0 he concluded thatXthe ratio 
of the neutral point amplitude at the heigh? of the peak disturbance level in 
the boundary layer to the free-stream sound amplitude was 10-4 for the conditions 
studied. He noted that Shapiro's data showed a value of 0.4 for this ratio 
and considered the discrepancy to be due to pressure gradient effects or to 
the possibility that the experimental sound waves were not plane waves and thus 
effectively generated local disturbances. Murdock stated that his results 
suggest that localized disturbances can generate a larger TS wave than can a 
plane wave disturbance. 

In summary, some of the experimental and theoretical work reviewed here 
suggests that in the acoustic-boundary layer interaction the most important 
region in the TS generation process is the leading edge region, at least for 
simple two-dimensional flows and waves. Furthermore, the theoretical studies 
show that once generated, the TS waves apparently travel unaffected by the 
sound field. Shapiro's work held out the possibility of experimentally 
verifying this aspect of the problem. 
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ASPECTS OF TOLLMIEN-SCHLICHTING AND ACOUSTIC WAVE INTERFERENCE 

Boundary layer stability theory posits the existence of waves which under- 
go changes in amplitude and speed while traveling downstream in the laminar 
boundary layer. These TS waves are vorticity waves and they may travel in 
any direction, but in low speed (incompressible) flow it has been shown that 
waves traveling directly downstream, the two-dimensional waves, have the 
greatest growth rate. Because of this, and the fact that they are the 
simplest waves to analyze, the vast majority of flat plate boundary layer 
stability results are for the two-dimensional wave case. The principle results 
from stability theory have been experimentally verified. The two-dimensional 
results will be considered here. 

According to the theory (see, for example, ref. 25), the wave phase 
velocity and amplitude amplification rate depend on the wave frequency, or 
the wave number, and the flow Reynolds number, usually based on a boundary 
layer thickness such as the displacement thickness. The results, suitably 
nondimensionalized, are usually displayed on stability diagrams, which most 
often consist of curves of constant amplification rates plotted on frequency 
or wave number vs. Reynolds number graphs. Phase speeds can also be drawn on 
such graphs. The constant amplification rate contours form loops which are 
open to the right on the diagrams. The contour of zero growth rate is termed 
the neutral curve and inside this curve waves are amplified and outside they 
are damped. Shapiro found that the TS waves were generated with the same 
frequency as that of the excitation sound field, and therefore the most con- 
venient stability diagram to consider is a frequency-Reynolds number one. On 
such a diagram the TS wave would follow a known horizontal path. In the lower 
Reynolds number region the wave would be damped until reaching the so-called 
lower branch, or Branch I, of the neutral curve. Downstream of this point 
the wave would undergo amplification until the upper branch of the neutral 
curve was reached, and thereafter the wave would be damped. The lowest Reynolds 
number for which amplification is possible, when all frequencies are considered, 
is called the critical Reynolds number. However, because only one particular 
frequency, 500 Hz, is considered in the present report, the definition of the 
critical Reynolds number will be altered somewhat here. The critical Reynolds 
number will be taken as the Reynolds number at which a 500 Hz TS wave can 
begin to amplify (i.e., the Reynolds number of the intersection on the stability 
diagram of the 500 Hz line with the lower branch of the neutral curve). For 
the frequency and free-stream flow conditions of Shapiro's experiment, this 
value was Reg* = 990. The downstream Reynolds number at which damping begins 
is 1900. The corresponding distances are approximately 17 and 63 centimeters, 
respectively, from the leading edge of the plate. If the sound field generates 
TS waves but does not affect their subsequent growth, and if the flow field 
and boundary layer development match flat plate theory, than TS wave amplitudes 
would be expected to grow nearly sixty-fold in the 17 to 63 centimeter region 
and to decay elsewhere. In contrast to the wave amplitude, the wave speed 
is only a weak function of Reynolds number and would be expected to change 
by only 5% or so. 

Another important feature predicted by stability theory is that at any 
station the rms streamwise velocity perturbations associated with the TS waves 
have a maximum amplitude in the lower portion of the boundary layer and go 
through a minimum in the outer half. Part of the reason for this is the fact 
that two-dimensional TS waves introduce vertical-like perturbations to the 
flow and, in a sense, may be likened to periodic counter-rotating transverse 
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eddies. These travel downstream with a speed of'about one-third the free-stream 
velocity and their axes lie in the outer portion of the boundary layer near 
y/a = 0.7. At this height the vertical velocity perturbation is a maximum 
while the streamwise component is zero. The structure of the TS waves can 
be quite elongated in the streamwise direction. The minimum wavelength for 
unstable TS waves is about 66 (the wavelengths of those of importance to the 
boundary layer transition problem are usually less than 306). The influence 
of the waves does extend into the free-stream, but not significantly above 26. 
Perhaps the most complete set of figures depicting.the nature of TS waves is 
in a chapter in the textbook of Radbill and McCue (ref. 26). This book, while 
containing one of the most complete sets of flat plate boundary layer stability 
tables and figures, is an applied mathematics rather than fluid mechanics 
text, and it has not been widely referenced in the stability or transition 
literature. 

The hot-wire anemometer responds, except at very low velocities, essen- 
tially to streamwise velocity fluctuations. Since the TS waves are periodic, 
the anemometer will therefore register sinusoidal signals everywhere in a 
TS wave field except at the null position in the outer region. Above and 
below the null position the signals will be 180° out of phase because of the 
vertical nature of the wave. This phenomenon was beautifully demonstrated 
in the now-classic stability experiment of Schubauer and Skramstad (ref. 1). 
There have been occasions, both in textbooks and the literature (refs. 27 and 28) 
where the location of this phase reversal has been inadvertently called the 
"critical layer," but this term refers to-the height within the boundary layer 
where the local velocity matches the velocity of the TS wave. The term arose 
out of early inviscid stability analyses which predicted an infinite dis- 
turbance amplitude at this height. (Later analyses included viscous effects, 
and the precomputer asymptotic methods showed that a phase jump occurs at the 
critical layer (ref. 29); the equations show that a phase reversal occurs 
only during a part of the wave cycle. This reversal, by the way, does appear 
to be visible in figure 6.17 of the computer results of Radbill and McCue). 
The largest fluctuations do in fact occur in the vicinity of the critical layer, 
and the term has sometimes been used (misused) by experimentalists (especially 
in supersonic investigations) to mean the layer or region where maximum 
fluctuations are detected. In incompressible flow the critical layer and the 
region of maximum longitudinal velocity fluctuations is near the wall at 
y/6 - 0.2. The height of the maximum, as well as the null, depends partic- 
ularly on the Reynolds number (see figure 3 of Ross, et al., ref. 30). Shapiro 
kept the hot-wire probe well inside the boundary layer at the height of the 
maximum disturbance level while making the boundary layer measurements. This 
appears to be an accepted practice. He also measured the phase angle of the 
signal relative to the signal input to the upstream loudspeaker (no details 
were given as to how this angle was measured). 

The sound field also introduced sinusoidal streamwise velocity fluctuations 
in the tunnel test section. The primary component of the acoustic field was 
a 500 Hz plane wave traveling downstream with a velocity of the speed of 
sound plus the stream velocity. There were also waves traveling in the up- 
stream direction as a result of reflections from the end of the test section. 
Because of the relatively low frequency of the sound field, the refraction 
effects due to the velocity gradients in the boundary layer would not be 
expected to be significant. But while the flow boundary layer may have little 
effect on the sound waves, the flat plate itself, by virtue of the no-slip 
condition at the fall, produces the so-called acoustic boundary layer. It 
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will be shown later in the report that despite.the anemometer being very close 
to the plate near the leading edge region, it was probably outside of the 
very thin acoustic boundary layer during the stability measurements. Con- 
sequently, the acoustic signal inside the flow boundary layer can be con- 
sidered as essentially the same as that existing just outside of the layer. 

The situation may be idealized and summarized as follows. Within the 
boundary layer there are two families of traveling waves, the acoustic waves 
traveling with constant speeds and relatively constant amplitudes, and the 
TS waves traveling with the same frequency as the acoustic waves but at a 
much slower velocity, and one which changes slowly with distance. The TS 
wave amplitude can change many-fold along the plate. The behavior of the 
superposed signals will now be examined using complex diagrams. 

Shapiro presented boundary layer hot-wire anemometer data showing the 
signal amplitude and phase angle variation along the flat plate. Because both 
acoustic and Tollmien-Schlichting waves were present in the boundary layer, 
it was assumed in the present study that the anemometer output represented 
the superposition of signals from the acoustic and Tollmien-Schlichting waves. 
Since all of the signals are periodic with the same frequency, the relationship 
among the acoustic and TS wave amplitudes and phase angles can be easily 
understood if the signals are expressed in complex notation in polar form and 
represented on the complex plane. This will be done here. After reviewing 
complex representation of traveling waves, the complex diagram will be used to 
demonstrate the amplitude and phase angle behavior that should be expected in 
the acoustic-instability experiment. 

.iO = 
A complex quantity can be expressed in polar form using Euler's equation 

cost3 + i sine. A traveling sinusoidal wave with amplitude A, radian 
frequency w, and speed c can therefore be represented by 

A 
s = A ei(kx-ut+$) _ - A [cos(kx-wt+@) + i sin (kx-wt+Q)] 

where 2 is the complex signal, k = w/c is the wave number, and $I is the 
initial phase angle at x = 0 (circumflexed symbols indicate complex quantities). 
Since the real part of s^ is A cos(kx-wt+$), the usual form of a traveling 
sinusoidal wave, the standard convention is adopted that only the real part 
of 2 is considered to have physical significance. The complex signal 2 is 
represented on the complex plane with a line segment of length A having an 
angle of kx-wt+@ as shown in figure 1. The line segment will be referred to 
as a vector in this report. It is seen that at a given value of x the vector 
(in electrical theory this would be called a phasor) will rotate clockwise 
with increasing time at angular velocity -w radianslsec. The projection on 
the real axis has the physical significance, and the rms value is A&/2 
At any instant of time, the vector rotates counterclockwise with 
increasing x at a rate of k radians per unit length. 

Consider now the case of the sum of acoustic and TS traveling waves 
having the same frequency w. The signal sum would of course have the same 
frequency and is 

g=[Aae i(ka x + @,> + A 
ts e 

i(k,, x + Gts> I .-iut 
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Shapiro reported time-averaged values, and the rms value of 2 is simply 

[ Aa e i(ka X + $a> + A 
ts 

ei(kts x + &)] 

The behavior of 2 can therefore be studied on the complex diagram by con- 
sidering the sum of the two vectors in eq. (8). The vector representation 
and sum are shown in figure 2. The acoustic and TS vectors are displayed in 
figure 2(a), and the vector sum is shown in figure 2(b). To be representative 
of conditions upstream of the critical Reynolds number, the amplitude of the 
TS wave is s$own as being smaller than the-amplitude of the acoustic wave. 
The signal s may be expressed as A(x) eie(x), where the amplitude A and 
phase angle 8 are shown in the figure. A(x) and e(x) are the two quan- 
tities which were measured by Shapiro. The wave number of the TS wave is 
much larger than that of the acoustic wave, and the dotted circle in part 
(b) is to indicate that the TS vector spins rapidly about the tip of the 
relatively slowly rotating acoustic vector. The wave number ratio is the 
reciprocal of the wave speeds, and for a TS wave speed of 0.35 Uo3, the wave 
number ratio is therefore k /k = (a + U )/0.35 U,, where a is the 
speed of sound. Using value$sap$ropriate For the Shapiro experiment, 
(a = 344 mlsec, LJo> = 29 mlsec), the wave number ratio is nearly 37, and 
consequently, for every revolution of the TS vector the acoustic vector 
rotates approximately loo. From figure 2(b) it is clear that with increasing 
X the phase angle 8 oscillates nearly sinusoidally about the slowly in- 
creasing phase angle of the acoustic vector. Also, the greater the TS wave 
amplitude the greater the phase angle oscillations. The phase angle behavior 
is verified in figure 2(c), which shows the computed angles for the case of 
aa = Qts = 0, Ats = 0.5 Aa, and wave number values appropriate to the Shapiro 

experiment. As shown by the dashed line, the signal phase angle oscillates 
about a linearly increasing value. Figure 2(b) also shows that the amplitude 
of the wave sum undergoes a cyclic oscillation with increase in x. This 
behavior is illustrated in figure 2(d), where the amplitude variation with 
x has been computed for the same conditions as in 2(c). The nondimensional 
logarithmic format is similar to that used by Shapiro. 

Figure 2 shows how easy it is to understand the amplitude and phase angle 
behavior with the aid of the complex diagrams. From figure 2(b) it now be- 
comes obvious, for example, that as long as the TS wave amplitude is less 
than the acoustic wave amplitude, the amplitude of the sum oscillates about 
the acoustic wave amplitude value. The average of the minimum and maximum 
values thus matches the acoustic wave amplitude, and this result was shown 
algebraically earlier. When the amplitude of the TS vector exceeds that of 
the acoustic vector, a simple polar sketch will show that the average matches 
the TS amplitude. The amplitude of the TS wave is of course not going to be 
constant as in the figure. The amplitude would be expected to diminish until 
the location of the critical Reynolds number is reached and then amplification 
should begin. In figure 2(b), instead of following the dotted circular path, 
or more properly, the circular-like path whose center is slowly swinging 
around the origin of the polar plot, the changing TS amplitude creates a 
spiral path whose center swings about the polar origin. This spiral, which 
will be referred to as the TS spiral, is inward when the wave is damped and 
outward when amplified. An interesting thing happens to the phase angle 
downstream of the critical Reynolds number. At some point the TS wave ampli- 
tude will exceed the acoustic amplitude, and 'when this happens the outward 
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TS spiral will encompass the polar origin on the next pass in its vicinity. 
As may be seen in figure 2(b), the phase angle will then exceed 90°, and in 
fact, will continue to increase beyond 360°. For every 360' TS vector ro- 
tation, the phase angle 8 will be incremented by slightly over 360'. As 
the TS vector lengthens,the acoustic vector becomes smaller in comparison, 
and this results in a decrease in the eccentricity of the TS spiral about 
the polar origin. The reduced eccentricity decreases the oscillations in 
A and 8. When the TS wave nears its maximum amplitude the eccentricity is 
so small that the TS spiral is almost circular about the origin. As this happens 
8 increases nearly linearly with x and there is almost no oscillation in 
A. This feature will be evident in the acoustic-TS model of Shapiro's data. 

As shown in figure 2(c), the mean of the phase angle oscillations in- 
creased linearly with distance. This was a consequence of there being only 
the single downstream propagating acoustic wave field. In Shapiro's experiment 
there was also a weak reflected upstream propagating acoustic field present, 
and with acoustic waves traveling in both directions it is easy to show the 
mean of the phase angle oscillations no longer increases linearly. 

Upstream traveling waves are represented by ciockwise rotating vectors on 
the complex diagram. The total acoustic signal, 
counter-rotating vectors, and, as can be imagined, 

Aa , is now the sum of two 
its amplitude as well as rate 

9f rotation are no longer constant. Thus when the TS vector is added to 
A the center of the TS spiral moves in a nonuniform fashion. The effect of an 
&stream traveling sound wave is shown in figure 3. For simplicity, the wave 
numbers of the downstream and upstream traveling waves were taken as negatives 
of one another with k = -k = 6. The wave number of the TS wave was forty 
times greater at kts 1 240.2 The amplitudes of the downstream, upstream, and 
TS waves were respectively, Al = 1, A2 = 0.3, and Ats = 0.5. Gts was zero 
and $l = $2 = -9OO. The initial phase angles of the sound waves were chosen 
so that a special situation existed between x = 10 and x = 20, the range 
where Shapiro presented detailed phase angle data. In figures 3(a) and 3(b) 
the two acoustic vectors and their sum are shown at x = 10 and x = 20, 
respectively. To minimize confusion the TS vector and spiral have not been 
included in these figures. Since Al rotates counterclockwise and A 2 clockwise, 
as x increases from 10 to 20 the amplitude of the acoustic vector A would 
pass through a minimum at x = 15 while undergoing its maximum rate ofarotation. 
At the point of the maximum rotation rate the mean of the phase angle curve 
has its greatest slope, and this indeed occurs at x = 15 as may be seen in 
the phase angle plot in figure 3(c). The nonlinear behavior of the mean phase 
angle is clearly illustrated. The signal amplitude results are shown in figure 
3(d), where the values have been nondimensionalized by the mean signal value 
near x = 20 (more precisely, by the signal value at x = 20 with Ats = 0). 

The acoustic phase angles at the leading edge of the flat plate, $1 and 
depend on the geometry of the tunnel, 

PZit section 
the location of the plate within the 

, and in the case of $,, also on any phase shift that may occur 
in the downstream reflection process. The initial phase angles can obviously 
affect the results, and as an illustration of this the phase angle and amplitude 
results shown in figure 4 can be compared with those in figure 3. The only 
change in initial conditions from figure 3 to 4 is that $2 was changed from 
-900 to 900. In the new situation the magnitude of A reaches a maximum at 
x = 15 where the rotation rate is a minimum. In figurea 4 the mean phase angle 
changed from -17O to 17O between x = 10 and 20, while in figure 3 the cor- 
responding angle change is -47O to 47O. Clearly the upstream traveling wave 
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affects the results and such a wave was included in the present model of Shapiro's 
data. 

Recall that Thomas and Lekoudis (ref. 6), who only included downstream 
traveling sound waves in their calculations, found relatively poor agreement 
between their modeled phase angles and Shapiro's measured values. The computed 
phase angles had a linear mean growth which greatly exceeded that shown by 
the data. As demonstrated herein, the upstream sound waves may significantly 
alter the mean phase angle growth. 
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MODEL OF ACOUSTIC FIELD AND TS WAVES 

The point which is being emphasized in the present report is that with 
acoustic excitation the induced laminar boundary layer TS waves are traveling 
in a field of acoustic waves. The signal sensed by a transducer is the super- 
position of the various waves, and in order to correctly interpret the measured 
signal one must have knowledge of the superposing wave fields. It is therefore 
very important in this situation to have, along with the data, a mathematical 
model of the acoustic field. The simplest acoustic field to model in a test 
section would be that of a plane wave traveling along the test section in the 
axial direction. This is the situation one would like to see when, such as in 
the experiment of Shapiro, a loudspeaker is placed far upstream of the entrance 
of the test section. But this desired plane wave condition is not easy to 
achieve or approximate in practice, and one can expect to find, in addition to 
the simple plane waves, a sound field rich in oblique waves bouncing from wall 
to wall. The reflecting waves set up standing wave patterns and these can 
greatly alter the sensed signal. Large spatial variations in signal strength 
can result from superposing or interfering waves of near equal strength. A 
sentence from the acoustic textbook of Kinsler and Frey (ref. 31), although 
not specifically written in connection with test sections, expresses the problem 
quite well: "The formation of these standing waves makes it difficult if not 
impossible to measure the pressure amplitude of the initially incident plane 
progressive waves when reflective walls are present." Since it is likely that 
a test section acoustic field will consist of standing waves caused by reflec- 
tions, the estimate of the strength of any one wave cannot be made without 
considering and modeling, even in the crudest sense, the strengths of the 
principal waves involved. Inasmuch as the spatial variations in signal strength 
provide the evidence of the component wave amplitudes and phase relationships, 
simple one- or two-point measurements will not suffice to describe the acoustic 
field. It is easy to see that when using acoustic excitation the boundary layer 
transition investigator could (and probably does) spend considerable time just 
trying to investigate and control the sound field in his test section. 

In the present study a very simple model of the test section acoustic 
field was adopted. It was based on a set of measurements presented by Shapiro 
which shows the variation of sound pressure level along the centerline of the 
test section (as will be discussed later, the measurements should be interpreted 
as longitudinal velocity fluctuation levels rather than sound pressure levels). 
Only three elements were included in the model to account for the variations 
in the data: a primary plane wave propagating down the test section in the 
axial direction, a much weaker upstream propagating plane wave which is the 
result of reflection of the primary wave from the test section exit, and random 
background noise (the fudge-factor element). Because of a need for additional 
data and for more information concerning the experimental conditions, it will 
become evident that there was an element of uncertainty in the present modeling 
exercise. 

The topic of wave propagation inside ducts and channels is an important 
one in a number of disciplines and has received considerable attention. As an 
indication of the research activity in acoustics in this area, one can find 
under the heading "wave-guides, wave propagation in tubes and ducts" in the 
reference compilations of White and Teas (refs. 32 and 33) a listing of over 
220 reports published (mostly) during the two-year period from 1977 to 1978. 
Of course, the transition researcher cannot switch to acoustic research and 
still accomplish his task, but it is imperative that some study of the subject 
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be made because of the importance of the modeling. For the benefit of those 
new to the subject, a brief review of sound propagation in ducts is given 
in the Appendix. The information for the review was taken from various text- 
books and will serve little more than to introduce some terminology and 
concepts, but this section will occasionally be referenced later in the report. 
An extensive state-of-the-art survey of the subject, c. 1975, can be found 
in the article by Nayfeh, Kaiser, and Telionis (ref. 34). Some later articles 
may be found in references 35-39. 

Acoustic Model of MIT Test Section 

In the acoustic-boundary layer interaction model the sound field had to 
be accounted for, and in the present scheme the sound was assumed to be super- 
imposed upon the TS waves traveling in the flat plate laminar boundary layer. 
For this purpose Shapiro's free-stream hot-wire anemometer data along the test 
section centerline were used. This was the only data available and had to be 
used, but aside from this important fact, this procedure requires some rational- 
ization, for there are at least two assumptions implicit in the method. The 
first is that the sound and boundary layer do not affect each other in the mean 
(an energy transfer to the TS waves is allowed). By this it is meant that the 
sound field is not altered by the plate boundary layer as the sound traverses 
the layer, and that the sound does not affect the mean laminar flow. The second 
assumption is that Shapiro's free-stream centerline acoustic levels are the 
appropriate ones to use in the superposition. These two assumptions will be 
considered prior to discussing the acoustic model itself. 

The assumption that the sound and laminar boundary layer do not interact 
with some net affect (aside from possible affects on TS waves--to be discussed 
shortly) is based on the fact that the sound field is weak and that the flow 
stations being considered are well away from the leading edge region. For 
these conditions (a/TJ,>l) the results from Illingworth (ref. 24; see also 
Murdock's use of the results, ref. 4) are appropriate and these show that the 
flow can be represented by the superposition of a laminar boundary layer and 
a plane acoustic wave traveling over a flat plate. The acoustic field decays 
near the surface in its own boundary layer. The acoustic boundary layer, which 
does not grow with distance, is thus embedded within the flat plate laminar 
boundary layer. Outside of the acoustic boundary layer the fluctuation level 
matches that outside the layer and the plate boundary layer does not affect the 
acoustic field. It is assumed here that refraction effects are negligible, and 
this appears reasonable considering the low velocities and low frequencies in- 
volved. Furthermore, since the acoustic perturbations have zero mean, the 
acoustic field does not have a mean affect on the flow boundary layer (again, 
aside from affects on TS waves). So, there is no net affect on each other, 
and as long as positions outside of the acoustic boundary layer are considered 
the free-stream acoustic field can be taken as a superposing field. 

The Illingworth analysis does not include TS wave behavior. If energy from 
the sound field was fed into the TS waves, the sound field inside the boundary 
layer could commensurately weaken along the plate. In such a case any acoustic 
measurements taken in the free-stream prior to plate insertion may not be 
the appropriate data to model because the signal weakening would not be 
present. It is the present author's opinion, however, that because of the 
low frequency involved, diffraction effects would operate to sustain the 
acoustic level within the boundary layer (the ratio of the acoustic wavelength 
to the length scale of the nonuniform region involved, the laminar boundary 
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layer thickness, ranged from 760 to 240 over the x stations of 7.5 to 75 cm 
covered in Shapiro's measurements). The free-stream acoustic measurements 
would thus still be the appropriate superposing acoustic field to model, at 
least from the standpoint of boundary layer effects. 

There remains the task of showing that Shapiro's boundary layer measure- 
ments were taken outside of the acoustic boundary layer. Shapiro kept the 
hot-wire at the height within the boundary layer where the fluctuations were 
greatest. Stability theory predicts this height to typically be in the range 
of y/6 = 0.1 - 0.3. Shapiro presented some disturbance amplitude profiles 
across the boundary layer, and the peak fluctuations levels occur in the 
range of y/6 = 0.15 - 0.17. The acoustic boundary layer thickness may be 
taken as 6 = 1.55 m (see Attenuation section of Appendix) and the flow 
boundary l:yer thickness is 6 = 5 m . The ratio of the two thicknesses 
may then be expressed as 

6 
$ = 0.175 /- 

!xl 
fx 

For f = 500 Hz and U, = 29 m/set the ratio of the probe height to the acoustic 
boundary layer height may thus be estimated to have ranged from 1.0 to 3.5 
as the probe's downstream station was varied from x = 7.5 cm to 75 cm. The 
effect of the acoustic boundary layer can therefore be neglected inasmuch 
as the wire was outside of this region. 

The second assumption, concerning the suitability of Shapiro's free-stream 
acoustic measurements will now be considered. In the acoustic measurements of 
the test section noise field Shapiro did not specify the y, z position of his 
probe. It is the present writer's opinion that the measurements were taken 
along the centerline of the tunnel and without the flat plate present. If 
this was in fact the experimental situation, then the acoustic data may not 
be the most appropriate because the presence of the plate can change the 
acoustic field. The change occurs because of at least three factors: (1) the 
plate divides the test section into two channels and the acoustic modal 
behavior in the channels differ from that in the empty test section; (2) the 
reflection factor for the downstream open end of the test section does not 
equal the channel reflection factors; and (3) the different boundary conditions 
cause different evanescent noise fields. Furthermore, the plate was not 
mounted along the centerline, so the acoustics of the two channels would 
differ. Clearly the sound field along the centerline would not be the same 
as that existing just outside of the flat plate boundary layer, but the extent 
of the difference is not known. It will be conjectured shortly that the 
difference may not have been significant. The use of the free-stream acoustic 
data is thus far from ideal, but it is the only data available and the reader 
may judge the degree of the impropriety. These problems will be discussed 
in more detail after the MIT tunnel is described. 

MIT tunnel and preliminary acoustic measurements. - The MIT facility was 
a low-speed open-circuit tunnel consisting of a settling chamber, contraction 
section, test section, diffuser and muffler, and blower. The settling chamber 
was about 2 314 m in length and was fitted with a honeycomb (soda straws) and 
screens to reduce the turbulence. The contraction section was approximately 
1 314 m long and had a contraction ratio of 20 to 1. The test section was 
38 cm X 38 cm and had a length of 2 m. The test,section terminated in an 
open-duct configuration, and downstream the flow was an open jet for 2 m. 

24 



The test section and the open region were enclosed in what was called the 
blockhouse. The blockhouse was a structure 2 k m high and 4 m long (depth 
not given), and the downstream wall held a collector nozzle for the entrance 
to the diffuser. The blockhouse was lined on the inside with acoustically 
absorbent material and was sealed so that no outside air could enter during 
tunnel runs. The tunnel was originally operated with a 4 m test section and 
no open region. For this closed-duct configuration the free-stream turbulence 
levels were around 0.05% of the free-stream velocity. In the open-duct 
configuration the disturbance level rose to 0.16%. The spectrum showed a 
broad peak at 2.5 Hz, and this was reported to be identical to the calculated 
Helmholtz resonance frequency of the blockhouse, with the test section and 
the diffuser constituting the resonator necks. When the measurements were 
filtered with a low frequency cutoff of 10 Hz, the turbulence reading was 
0.04%. 

Shapiro reported that early acoustic tests were performed with the test 
section in its original 4 m closed-duct configuration. The walls were hard and 
the acoustic excitation was white noise (flat spectrum) played through a 
loudspeaker placed in front of the settling chamber. A microphone was placed 
in the test section and rapid analyses were done with a real-time spectrum 
analyzer. Tests were done with and without flow, and there was very little 
qualitative change in the results, so subsequent tests were made with no flow. 
The report contains no information about the microphone or the microphone 
housing used when measurements were taken with flow. The author reported that 
the data showed tremendous peaks and nulls in the spectrum and in the spatial 
intensity of the test section noise field (up to 20 bB). The test section 
was changed to the open configuration and this improved the situation somewhat. 
The test section walls were then lined with a thick layer of fiberglass to 
reduce the transverse variations in the field. This worked very well at 
reducing these variations, but introduced a longitudinal attenuation of the 
order of 35 dB/meter. Finally, a smooth foam material with a moderate acoustic 
absorption coefficient was selected, and this reduced the longitudinal attenua- 
tion; the reader is not told what happened to the transverse distribution. 

Tests were then conducted with a pure tone generated by the loudspeaker 
in front of the tunnel while the tunnel was running at test speed. The pure 
tone was later used in the boundary layer stability tests. A hot-wire 
anemometer, which is essentially sensitive to the longitudinal velocity 
fluctuations, was used to measure the acoustic velocity disturbance levels 
and these were converted to sound pressure levels using the plane progressive 
wave assumption p" = p c ii. A microphone was used to examine the transverse 
variations and to provide a check of the hot-wire calibration. A loud sound, 
over 100 dB, was necessary to overcome the wind noise on the microphone. The 
levels measured by the hot-wire and the microphone were reported to have 
agreed within f 2 dB; no information about the transverse distribution is 
given. Measurements along the axis showed a standing wave pattern due to the 
reflection of incident sound from the open end of the test section. The 
reflection coefficient was estimated from the data to be 0.2. (Note: Inasmuch 
as the Mach number is low, 0.08, the effect of the flow can be neglected and 
the reflection coefficient can be estimated using eq. (29). This equation is 
for a circular duct, so the radius will be taken as the value which yields an 
area equivalent to the actual square duct area,-i.e., r = 0.38/h . The theory 
is for a flanged duct, which the test section is not. Because of the block- 
house walls the test section does not represent the unflanged case either, 
so it is not easy to assess the expected error. For a 500 Hz tone and a sound 
speed of 344 m/set, the value of 2kr is 3.916. Equation (29) gives a value 
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of 0.26 for the reflection factor, a value which is close to the experimental 
one). To reduce the reflection factor Shapiro added an "acoustic impedance 
transformer" to the downstream end of the duct. "This consisted of tapered 
wedges extending each wall of the duct, so that the walls ended more gradually." 
This was reported to have reduced the reflection factor to 0.1. The resulting 
distribution of sound pressure level along the axis is presented as a figure 
in Shapiro's report, and this figure provided the basis for the noise model 
developed here. 

The experiences with the hard and the absorbent walls would appear to 
indicate that with the white noise excitation the transverse and the evanescent 
modes (see Appendix) significantly contributed to the test section noise field. 
From eq. (42), the cutoff frequency in the test section for transverse modes is 
453 Hz, and the white noise spectrum surely went well above this frequency. For 
the 500 Hz pure tone excitation case the only information available is the afore- 
mentioned longitudinal distribution figure (to be presented shortly). No 
spectral results are presented for the pure tone excitation case, and therefore 
it is not known just how pure the tone was. No description of the loudspeaker 
is given, but distortion and harmonics can occur when loudspeakers are driven 
to high levels, and in the literature review of the present paper, instances 
were cited where harmonic distortion was present. It does not appear that the 
hot-wire signal was filtered through a narrow bandpass filter centered at 500 
Hz, so extraneous signals could be in the data. The free-stream turbulence 
extends beyond the 500 Hz frequency, but at the 100 dB sound levels the natural 
turbulence would not be significant unless the intense noise levels excited 
a mechanical response of the settling chamber honeycomb or damping screens. 
This lack of filtering in the free-stream measurements is unfortunate because the 
signal was fed through a narrow bandpass filter in the boundary layer stability 
phase of the experiment. It would have been nicer to have modeled a free-stream 
signal that had been conditioned in the same manner as the boundary layer signal. 

Effects of plate. - As previously indicated, it appears that the free- 
stream acoustic measurements were made without the flat plate in the test 
section (present conjecture). The plate, mounted horizontally near the 
tunnel centerline, spanned the test section and its length, including a 
thin 15 cm splitter plate that was added to the end of the plate to prevent 
vortex shedding, was 183 cm. From an acoustic standpoint the plate would 
essentially divide the test section into two compartments and each would 
have its own modal characteristics. Because of local nonuniformities in the 
free-stream turbulence the plate was mounted 6.3 cm below the centerline. 
The modal conditions above and below the plate would therefore be different. 
The cutoff frequency for the lowest mode, the 1,0 mode [m = 1, n = 0, w = 0.38 m, 
h = 0.253 m - see eq. (42)],is 453 Hz and is determined by the width of the 
tunnel and is independent of the location of the plate. Without the plate there 
is a 0,l mode at the 453 Hz frequency, but this mode is not present with 
the plate in place. The next higher cutoff frequency is 640 Hz (1,l mode). 
With the plate the next higher cutoff frequency is 680 Hz (0,l mode) above 
the plate and 905 Hz (0,2 mode) below (h = 0.127 m). With or without the 
plate only the first mode cutoff is below 500 Hz and therefore, in addition 
to the fundamental mode, only first mode propagation is possible. The pressure 
modal plane of the 1,0 mode lies along the axis and is parallel to the side 
walls. Data on the transverse distribution of sound pressure would have been 
desirable and interesting. The longitudinal location of the plate was not 
specified, but it is likely that the end of the splitter plate was near the 
end of the test section. Because the open-end impedance depends on the cross 
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section dimensions, the reflection coefficients in the regions above and below 
the plate would differ from each other and from the empty tunnel value (and 
when the reflected waves reached the leading edge the different amplitudes 
and phase angles-- the phase angle also varies with the reflection process-- 
would cause velocity perturbations in the normal to the flow, a phenomenon 
perhaps relevant to TS wave generation). Because of the acoustic transformer, 
eq. (29) cannot be used to estimate the reflection factor for conditions above 
the plate, but it may give a suitable indication of the percent change in 
factor due to the area reduction. Using radii determined in the manner shown 
previously, eq. (29) shows that a 30% increase in reflection factor might 
occur. If the actual reflection factor increased accordingly, the increase 
from 0.1 to 0.13 would not significantly increase the strength of the standing 
wave pattern in the channel above the plate. 

The fundamental and 1,O propagation modes have grazing incidence on the 
plate and the rigid plate would not be expected to significantly affect these 
modes. The 0,l mode would be missing and would not contribute to the standing 
wave. The principal remaining unknown element is how the changed boundary 
conditions affected the evanescent fields. It will be assumed that there was 
little change. 

Assessment of acoustic situation. - The acoustic situation is assessed as 
follows. Assuming the settling chamber to be square in cross section, there 
are 24 transverse modes with cutoff frequencies less than the 500 Hz tone 
from the loudspeaker. Since the loudspeaker certainly does not act as a 
perfect piston, it is likely that numerous oblique modes would be excited. 
What happens in the contraction region is a state-of-the-art problem. The 
entrance to the test section is probably far enough from the loudspeaker, so 
that a plane wave may be assumed to enter the test section. The 1,O mode of 
propagation is possible in the test section and it is likely that this mode 
was excited. The 1,O mode of propagation is a wave which travels parallel 
to the horizontal surface of the plate and reflects back and forth from the 
side walls. The boundary layer instability measurements were taken along the 
centerline of the plate and thus in the pressure modal plane of the first 
mode. It is very likely that many evanescent modes would be excited in order 
to meet the complicated entrance boundary conditions resulting from entering 
oblique waves which do not match the 1,O modal conditions. In the test section 
the flow velocity is low, 29 m/set and the gross effects on the sound field 
should not be too great. The boundary layer on the tunnel walls would probably 
be turbulent. At the rather low frequency of 500 Hz, the convective effects 
of the mean flow on the sound would probably dominate the refraction effects 
taking place inside the boundary layers. Because the wall material is not 
highly absorbent and because the boundary layers do not occupy much of the 
volume of the test section, it is likely that the fundamental mode suffered 
little attenuation. Attenuation of the sound field downstream of the test 
section entrance may reasonably be attributed to the natural decay of the 
evanescent modes and their partial absorption by the walls (the walls being 
more absorbent at nongrazing incidence). The 1,O mode waves may suffer 
significant attenuation due to wall reflections; their angle of incidence is 
25O from the normal to the wall, and a ray path will undergo approximately 
11 reflections from the side walls over the downstream distance of two meters 
to the test section exit. 

At the exit of the test section the fundamental plane-wave mode would 
undergo a complicated reflection process. The serrated walls (or whatever the 
shape of the acoustic transformer section) makes it difficult to envision 
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the nature of the reflection process of the fundamental and oblique modes. 
No doubt numerous evanescent waves are excited. As these die out only the 
fundamental and 1,0 mode reflected waves remain. It is clear that the strength 
of the reflected fundamental wave would be greatly diminished. Because of 
the low Mach number of the flow, the decay rates of all of the upstream propa- 
gating waves would differ little from the downstream rates. The upstream 
propagating waves would be partially reflected in the entrance region of the 
test section, but because the impedance change is gradual the strength of the 
reflected waves would be quite small in comparison with the incoming sound 
waves from the speaker. 

Mathematical model. - The mathematical model of the acoustic pressure and 
velocity levels along the test section centerline will now be presented. Because 
the free-stream data modeled likely represent the conditions in the empty tunnel 
and may not adequately describe the disturbance level just outside of the 
boundary layer when the plate is present, there is an admitted element of 
uncertainty in the modeling exercise. 

The data available are hot-wire data and represent longitudinal velocity 
fluctuation levels (except at very low speeds, the hot-wire anemometer is much 
more sensitive to longitudinal fluctuations than transverse ones). Shapiro 
converted the velocity levels to pressure levels using the progressive plane 
wave equation i; = pcii, but it must always be kept in mind that the data 
represent fluctuating velocities rather than pressures. This point is not 
merely of academic interest, for the issue immediately arises when considering 
the 1,O mode. If only the acoustic pressures had to be modeled this mode 
could be ignored because the mode has a pressure node along the centerline. 
The present interest is in the velocities, however, and the fluctuating veloci- 
ties, in the 1,0 mode are at a maximum along the axis. Since off-axis measure- 
ments were not presented, the only hope of determining the extent of the 
presence of the 1,0 mode is through examination of the standing wave patterns 
set up with the fundamental mode or with an upstream traveling 1,O mode. 
Based on such an examination of the data, the decision was made to ignore 
the 1,0 mode in the model. The situation is not a clear-cut one, and dis- 
cussion concerning this decision is deferred until after the complete model 
is presented. 

The downstream traveling 500 Hz fundamental mode is considered to be 
propagating with a constant amplitude and a 
this wave is represented by ul ei(klx-wt+@l 7 

hase velocity of c + Uoo, and 
, where the amplitude and initial 

phase angle are to be determined. This wave is considered to reflect as a 
plane wave traveling upstream with a constant amplitude and a phase velocity 
of c-u. The wave is represented by 
needed be:ause the wave travels upstream. 

u2 ei(-k2x-wt+@2). The -k2x is 
The upstream and downstream ends 

of the test section are taken as source regions of evanescent waves. These 
waves die out exponentially at rates which depend on their modal numbers. 
Mathematically these modes at each end of the test section will be lumped 
into decay law expressions, and for simplicity the same mathematical form for 
each of the two groups of disturbances will be used. The disturbance field 
from each end of the test section decays with distance from the ends and the 
decay functions given below vaguely represent this phenomenon. The real purpose 
of the functions is to provide a means of fitting a curve through some data 
points. If expressions describing all of the individual disturbances in time 
and space were available, the proper way of determining the mean-square value 
of the total signal would of course be to sum, square, and average the result 
over time. Obviously this cannot be done here, and instead the square of 
each of the decay expressions will be added to the mean-square value of the 
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sum of the two traveling waves. The square root of this sum is then taken as 
the rms value of the total disturbance field. 

For the upstream sogrce of evanescent waves the signal is assumed to decay 
according to Bl/(x + a) , where a, b, and B 

1 
are constants to be determined 

from the data; x is the distance from the ocation of the leading edge of 
the plate. The location of the plate was not given in the report. Also, the 
origin for the x axis in the free-stream sound pressure level figure was not 
specified as coinciding with the leading edge loca.tion, but it is reasonable 
to assume that it was. The decay law describing the signal from the down- 
stream disturbances is taken as B /(a-x + a)b where 
and ! is rather arbitrarily take; as 170 cm, B2 is to be determined 

the guessed distance from the 
leading edge to the end of the test section. There is nothing particularly 
special about the form of the decay functions chosen other than the fact that 
they were tried initially and found to be satisfactory. 

The mean-square value of the two traveling waves is one-half of the sum 
of the squares of the real and imaginary parts. If u represents the total 
fluctuating velocity signal in the free-stream along t e tunnel axis, then f? 
according to the above recipe, 

2 

- f 
ufs 

=% [ulsin(klx-wt+@l) + u2sin(-k2x-wt+G2)12 

+ [ulcos(klx-wt+$l) + u2cos(-k2x-ot+$2)]2 

+ 

Letting‘ R2 = 
be simplified y1 be the reflection factor and A ~$1~ = $,-$,, eq. (9) can 

2 2 = u ufs 1 

(9) 

%(l+R;) + R2cos[(kl+k2)x + A $12 I 

The strength of the evanescent waves at the entrance to the test section 
may be expected to depend on 
to depend on u2. To u1 and that of the evanescent waves at the exit 

simplify matters 
and with this ratio denoted by D, eq. 

will be equated to B2/u2, 
ecomes 

2 2 =u ufs 1 
I 

%(l+R;) + R2cos[(kl+k2)x + A $12 ] 

+ D2 

1 

(x+4 2b + 
R; 

(170-x+a)2b 1 (11) 

The value of x is to be in units of centimeters. The rms fluctuating velocity 
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signal is thus "u J- 2 = 
by trial-and-errof: Ufs' The unknowns, which are essentially determined 

are ul' R2, A 912, A, a, and b. The reflection factor 

R2 is expected to be about 0.1. 
amplitude of the signal. 

R2, ul’ A, a, and b are used to adjust the 
The upstream and downstream traveling plane waves 

produce a standing wave pattern, and the periodicity is determined by 
kl + k2, a sum which is known. The phase angle difference, A 4 shifts the 
oscillatory pattern upstream or downstream and is rather easily %termined 
from the data. This factor depends upon the length of the test section, the 
values of c and U,, the phase shift which occurs during the reflection process, 
and the location of origin of the x axis. 

A desk-top computer with a CRT screen and a multi-color plotter were used 
in the data fitting task. The figure containing the data in Shapiro's report 
was photographed, and an enlargement was placed on the plotter and the data 
points digitized so that they could be displayed on the CRT screen. In much 
of the data fitting work the data and computed curve were plotted on the screen, 
since plotting on this device was much faster than on the hard plotter. Besides 
being used for the final plot, the hard plotter was also occasionally used 
in the data fitting work because the plots were larger, and also by using dif- 
ferent line colors and types a convenient record could be kept of the effect 
of changing various model parameters. 

Shapiro obtained the sound pressure levels from the hot-wire data by 
using the relation p = p&. As is discussed in the Appendix, this formula is 
only valid for plane waves and is not strictly correct when a standing-wave 
field is present (if one of the progressive waves involved in the production 
of the standing wave is much stronger than the remaining components, the error 
incurred in using the relation is reduced). To match Shapiro's data his pro- 
cedure was followed and therefore p was also taken as pcGfs. Figure 5 shows 
the comparison of the data with the resultant model. Of particular importance 
is the range from 10 to 60 cm, and the agreement is good here. The periodicity 
agrees well with3the two-wave model. The values of the constants are as follows: 

u1 
The 

= 3.337 x lo- m/set, R2 = 0.1, D = 1.4, a = 9, b = 0.32 and A al2 = -58;. 
speed of sound was taken as 344 m/set, TJo3 = 29 m/set, oc = 416.24 (kg/m -set), 

and the frequency was 500 Hz. The sound pressure level in decibels is computed 
from 20 log p/pref, where pref is the standard value of 2 X low5 N/m2. The 
sound pressure level formula reduces to 20 log p + 93.9794. 

Figure 6 shows the variation of the acoustic velocity and pressure along 
the tunnel axis according to the present model. The velocity was determined 
using equation (It). As discussed in the review, the pressure and velocity in 
a standing wave are 180' apart in phase (they are in phase in a plane progres- 
sive wave), so the pressure was determined by changing the sign of the cosine 
term in eq. (I#) and multiplying the results by pc. Presumably the sound 
pressure levels in the figure should compare favorably with microphone measure- 
ments of the pressure. Shapiro did not present the results of his microphone 
measurements inside the test section, but as mentioned earlier, he did state 
that they were in agreement, + 2 dB, with the hot-wire results. When the 
pressures in figure 6 are compared with the hot-wire "pressures" of figure 5, 
the values are within 1.5 dB of each other. It is possible that far fewer axial 
stations were surveyed with the microphone than with the hot-wire, and hence 
the microphone data would appear as scatter about the hot-wire data instead of 
revealing a 180' phase shift. 

The 1,O mode issue. - The deferred matter of the presence of the 1,0 mode 
will now be considered. Actually, with the plate absent both the 1,0 and 0,l 
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modes can propagate (both have the same cutoff frequency). But since these 
modes have the same x-component wave number, for the sake of brevity only the 
1,0 mode will be referred to here. As previously stated, evidence for the 
extent of presence of the 1,0 mode must be sought in the standing waves it 
would set up along the tunnel axis. Equation (43) shows how the wavelength 
of the standing wave is related to the wave numbers of the modes involved. 
For a square duct, eq. (41) gives 

kx =; J- tf2 h2 
2 - (m2 + n2> 

m,n C 
(12) 

where h = 0.38 m here. The amplitude of the oscillations in the standing wave 
depends on the relative strength of the two waves involved; the greater the 
disparity, the smaller the amplitude. Four wave families are involved here, 
the 0,O (fundamental) mode and its reflection, and the 1,O mode with its 
reflection (actually, an upstream 1,O mode would also likely be created in the 
reflection of the fundamental mode since, as is mentioned in the Appendix, modes 
are coupled in complicated reflection processes). The downstream 0,O mode is 
expected to have the greatest strength. Its reflection is weak, but may be 
comparable in strength to the downstream 1,O mode waves. In the hierarchy of 
wave amplitudes these two waves might be expected to occupy the second and 
third positions, but it is not clear in which order. Accordingly, the two 
standing waves which should be the most prominent would be those produced by 
the fundamental and its reflection and by the fundamental and the downstream 
propagating 1,0 mode. Equation (43) and (12) were used to compute the wave- 
lengths of the possible standing waves (the effects of the flow were properly 
ignored) and the results are displayed in Table I. 

TABLE I. - LONGITUDINAL WAVELENGTHS 
OF INTERFERENCE PATTERNS PRODUCED 

IN 38 CM x 38 CM DUCT BY 500 Hz 
MODES TRAVELING IN THE SAME 

AND OPPOSITE DIRECTIONS 

Interfering 
modes I_--. ----- ---___" ----- 

0,o - 0,o 

0,o - 1,o 

1,o - 1,o 
- -~ -.. - --_._ ~~ _ _ _ 

Wave16 
Same 

direction 

120 

, _~-- ; -.-_ --__-. 

Opposite 
direction 

34 

48 

81 

The two standing waves of special interest; the 0,O - 0,O and the same- 
direction 0,O - l,O, have wavelengths of 34 and 120 centimeters, respectively. 
Figure 5 clearly shows the 0,O - 0,O standing wave, and this phenomenon was 
included in the model. The data may also be showing a 120 cm wave. A peak 
at 5 cm occurs, and one at 125 cm would be consistent with an extrapolation of 
the data. Thus the 1,O mode may be present with an amplitude exceeding that 
of the 0,O reflected wave. But the evidence here rests primarily on the fact ' 
that the last two data points show a rising signal strength instead of falling 
as would occur if the 1,0 mode was insignificantly present. Also, the existing 
data do not show a symmetry about the half-wavelength point of 65 cm. Without 
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additional data the issue is moot. There does not appear to be evidence of 
48 cm or 81 cm waves present, the remaining two possibilities in Table I. 

In order to counter the feeling that it may generally be safe to neglect 
the transverse modes, the reader is invited to examine figure 7. This figure 
is from Shapiro and shows the variation of the sound pressure (read velocity) 
level along the axis for the case of 1000 Hz excitation. Most of the data in 
Shapiro's report were for the 500 Hz case, but 1000 Hz was also used in the 
investigation. For 1000 Hz, the 1,l and 2,0 (and 0,2) modes are also possible 
(cutoff frequencies of 640 Hz and 905 Hz, respectively). The relevant standing 
wave wavelengths are given in Table II. 

TABLE II. - LONGITUDINAL WAVELENGTHS 
OF INTERFERENCE PATTERNS PRODUCED 

IN 38 CM x 38 CE4 DUCT BY 1000 Hz 
MODES TRAVELING THE SAME 

AND OPPOSITE DIRECTIONS 

1 
Interfering Same Opposite 

modes direction direction 
I 
i 
i 

0,o - 0,o 17 

j 

0,o - 1,o 318 18 

0,o - 1,l 148 19 

i 030 - 2,0 60 24 
j 
i l,o - l,o I 

19 

I 

1,o - 1,l 279 i 21 

l,o - 2,0 74 
1 
1 26 

; 1,l - 1,l 22 
I 1 
i 1,l - 2,0 100 29 
; 

1 
2,0 - 2,0 1 

1 
40 

ti 

Unlike the 500 Hz case, some of the wavelengths for different mode inter- 
actions are nearly equal and this makes it even more difficult to make un- 
ambiguous conclusions. The data show a short wavelength, 19-22 cm, standing 
wave of relatively small amplitude superimposed on a much larger wavelength, 
45-70 cm, standing wave having a much larger amplitude. The short wavelength 
wave is characteristic of many of the opposing-direction wave mode inter- 
actions. Because of the higher frequency, smaller reflection coefficients for 
the waves reflected from the open end of the tunnel should be expected, at least 
for the fundamental mode. Only the same-direction 0,O - 2,0 interaction has 
a wavelength comparable to the long-wavelength, large amplitude pattern shown 
in the figure. It is of interest to note that the 2,l mode, not shown in the 
table, has a no-flow cutoff frequency of 1012 Hz and a 1009 Hz frequency in the 
downstream direction if flow is included. The 1009 Hz is within 1% of the stated 
excitation frequency, and unless the signal generator was one of great precision, 
there is a distinct possibility that the excitation frequency slightly exceeded 
the cutoff frequency for the 2,l mode. As indicated in the duct acoustics 
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review, when a nonrigid duct is excited with a frequency just greater than some 
cutoff frequency, it is possible that this mode will have a large amplitude. 
Table III contains the computed no-flow standing wave wavelengths for a 1015 
Hz signal. The only interactions with a 2,l mode that give a wavelength com- 
parable to the long-wavelength pattern in figure 7 are the 2,0 - 2,l opposing- 
direction and 1,l - 2,l same-direction interactions (for a 1020 Hz signal, 
these wavelengths change, respectively, to 58 and 52 cm). Without additional 
data it is not possible to be confident of just what modes created the large 
amplitude, long wavelength standing wave pattern. 

TABLE III. - LONGITUDINAL WAVELENGTHS 
OF INTERFERENCE PATTERNS PRODUCED 

IN 38 CM X 38 CM DUCT BY 1015 Hz 
MODES TRAVELING THE SAME 
AND OPPOSITE DIRECTIONS 

- - - - I  - -  

Interfering 
modes 

0,o - 0,o 

0,o - 1,o 

0,o - 1,l 

0,o - 2,0 

0,o - 2,l 

l,o - l,o 

l,o - 1,l 

l,o - 2,0 

l,o - 2,l 

1,l - 1,l 

1,l - 2,0 

1,l - 2,l 

2,0 - 2,0 

2,0 - 2,l 

2,l - 2,l 

- 

I_-_L_P.d.-- --._ ___----~_- 

Wavelength, cm 
--.-..-._----..-_L--- -2 

Same 
direction 

323 

153 

62 

37 

285 

77 

41 

105 

48 

90 

.-_w-.- - 

Opposite 
direction 

17 

18 

19 

23 

32 

19 

20 

25 

35 

22 

28 

40 

37 

64 

225 

A very important distinction exists between the 500 Hz and 1000 Hz cases. 
The presence of the plate does not affect which modes may propagate in the 500 
Hz case but it does so for the 1000 Hz situation. With the plate present, the 
first few modes and cutoff frequencies for the channel above the plate are as 
follows: 1,O - 453 Hz; 0,l - 680 Hz; 1,l - 817 Hz; 2,0 - 905 Hz; and 2,l - 1132 
Hz. Below the plate the modes and frequencies are 1,0 - 453 Hz, 2,0 - 905 Hz, 
and 0,l - 1354 Hz. The 2,l mode, which may have been present without the 
plate, certainly does not propagate with the plate present. In addition, the 
1000 Hz signal is not very close to the cutoff frequency of the nearest 
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propagating mode and therefore no mode would be strongly excited. It is thus 
possible that in the 1000 Hz case the sound field could be significantly altered 
with the plate present. Offsetting the rigid plate would also affect the 
attenuation rates of modes which involve reflection from the plate. This is so 
because in addition to changing the angle of incidence of these modes (recall 
eq. (40)), it also changes the number of times an oblique ray path meets the 
absorbent tunnel wall. The present writer is content to stay with the 500 Hz 
case. 

Modeling of Tollmien-Schlichting Waves 

The longitudinal velocity perturbations produced by Tollmien-Schlichting 
waves can be represented by sinusoidal traveling waves whose speed and amplitude 
growth rate depend upon the frequency of the wave and the local boundary layer 
conditions. For a flat plate the boundary layer dependency is characterized 
by a Reynolds number, often the Reynolds number based upon the local boundary 
layer displacement thickness Reg,. Shapiro observed that the TS waves were 
induced with the same frequency as that of the excitation sound field, and 
this observation will be incorporated in the TS wave model. The TS waves will 
accordingly be modeled as downstream traveling sinusoidal waves whose wave 
number and longitudinal velocity fluctuation amplitude vary with x, and hence 
with Reg,, and whose frequency is constant at 500 Hz. Mathematically, at a 
given distance from the plate, 

u3 e 
i(k3x-Wt+$3) 

the TS wave will be represented as 
, where the subscript 3 is used inasmuch as this is the third 

traveling wave in the total model. The complete model, which embodies the 
fundamental assumption that the fluctuations in the boundary layer result from 
the superposition of the free-stream disturbances and the TS waves, comprises 
the three traveling waves and the two terms representing the evanescent waves, 
all summed as in the free-stream model, The mean-square value of the velocity 
fluctuations in the boundary layer, ugL , is thus taken as 

2 
UBL 

= '5 

t 
[ulsin(klx-wt+@l) + u2sin(-k2x-wt+$2) + u3sin(k3x-wt+G3)12 

[ulcos(klx-wt+$l) + u2cos(-k2x-wt+$2) + u3cos(k3x-wt+$3)]2 

' [(xYL)~]~ + I171:x+a)b]2 

1 

(13) 

The unknown quantities are u3, k3, @I,, and $1. Once $1 is determined, $I 
is computed from G2 = Gl - A cj12 since it is now known that A c$ ’ 2 

-58'. 
12 is 

Letting R3 = u3/ul, A $23 = $2 - $,, and A G13 = @1 - @,, eq. (13) 
may be simplified to 

2 2 =u UBL 1 +(l+R; + R;) + R2cos[(kl+k2)x + A L$~~] 

+ R3cod(kl-k3)x + A (b131 + R2 R3cos[(-k2-k3)x + A $231 

+ D2 1 
'2b 

(x+4 
+ R; 

(170-x+a)2b 
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Calculations were actually performed using equation (13) because it was also 
necessary to determine the phase angle 0 obtained from 

8 = tan -1 C sine terms 
C cosine terms 

and the summations are explicitly contained in eq. (13). 

Shapiro presented data showing the variation with x of the rms velocity 
fluctuation level and the phase angle 6 as obtained from the hot-wire measure- 
ments in the boundary layer. In the present model u3 and k 

i! 
were varied 

with x so as to make u reasonably match the hot-wire da a. From the 
variation of 
and from u3 with XBL the growth rates of the TS waves could be determined, 

k (x) 
procedures 1 

the behavior of the TS phase velocity could be obtained. The 
or doing this, which are trial-and-error, are given in the next 

section. 

Within the boundary layer TS waves traveling obliquely across the plate 
exist as well as two-dimensional waves traveling directly down the plate. 
Boundary layer instability theory predicts that the two-dimensional waves have 
the greatest growth rate, and therefore these waves should dominate the TS wave 
field in the region away from the leading edge of the plate. The present single 
TS wave model can be expected to be more appropriate for the downstream region 
where one type of wave predominates. The upstream region would likely encompass 
the area from the leading edge to some distance downstream of the critical 
Reynolds number station, the station where the flow is unstable and TS wave 
amplification can begin. Unfortunately, this upstream region is also the one 
of greatest interest in the acoustic excitation problem. 

Tollmien-Schlichting Wave Amplification Rates and Phase Speeds 

The quantities u (x) and k (x) were determined using a trial-and-error 
procedure. Amplitude a 3 ata were used to determine 
data were used to obtain $1, $,, and k3(x). 

u,(x) and the phase angle 
The desk-top computer and plotter 

were again indispensable in the procedure. As before, the Shapiro report figures 
were photographed, enlarged, printed, and then copies were made using an 
office copier. In matching the model to the data the model parameters were 
varied and the computed results were compared with the data by either plotting 
the results directly on the enlarged data plots or else on the CRT screen 
together with data points which had been read from the enlarged plots using the 
digitizing capability of the computer/plotter system. The CRT was primarily 
used in the initial phase of the modeling because of the greater plotting 
speed. As will be explained, once u,(x) and k (x) were obtained, the TS 
wave growth rates could be determined from a dif 2 erentiation of 
of In u3) and the phase speeds calculated from the reciprocal of 

u,(x) (actually 
k3(x)- 

Procedure for TS wave amplitude determination. - Since the amplitude data 
were plotted against Re and the phase angle against 

~$2 needed 
x, a relationship 

between x and Reg, . For a flat plate the Blasius velocity 
profile is appropriate, and for such a profile Reg, = 1.72 6;. For the 
data considered here the nondimensional frequency wv/U2 was gfven as 
5.6 x 10-5. The relation between x and Reg* for these tests can therefore 
be expressed as 

x = 5.6 X 1O-5 5 2 

(1.72)2 w 
Reg* * 
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With Ua = 29 m/set and f = 
1.747 x 10B5 Regz 

500 Hz, the equation reduces to x [cm] = 
and this was the relation used in the present work. 

Letting A represent a rms signal level, Shapiro plotted the boundary layer 
oscillation amplitude data in the form of In A/A0 vs Reg,. In boundary layer 
stability theory A0 is taken as the TS wave amplitude at the critical 
Reynolds number location. Since Shapiro believed that his experimentally 
determined values of A were a measure of the TS wave amplitude, it would be 
natural to take as A the value of A at the critical Reynolds number. 
The problem is that 2 exhibited the spatial modulations of a 2-cm wave- 
length standing wave pattern, and it would seem rather capricious to select 
a value of A at some particular value of RQ** Recall, however, that 
Shapiro treated the data by fairing a curve through the spatial oscillations. 
By doing so he concluded that the TS wave amplitude was "approximately constant" 
ahead of the neutral point and took A0 as "this constant level." So A0 
was rather nebulously defined. As discussed in the Introduction, the standing 
wave produced by the TS and acoustic waves is such that as long as the TS wave 
amplitude is less than that of the acoustic wave, a fairing of the data should 
produce a curve which matches the acoustic field strength. The acoustic field 
strength, at least in the absence of the plate, varied by about 25% over 
the range of x being considered. With no further guidance, A was taken 
as the value of the free-stream acoustic field strength at the !?ocation of 
the critical Reynolds number. The critical Reynolds number for a 500 Hz TS 
wave traveling in a flat plate boundary layer is 990, a value which corresponds 
to x = 17.1 cm. 
ii - BL'UBLo' where G 

Accordingly, in the model A/A0 was represented by 

BLO 

was evaluated using eq. (13) with x = 17.1 and u3 = 0. 

Some of the lower Reynolds number In A/A0 data have been replotted in 
figure 8 in the form of A/A0 vs. Re+. The Reynolds number range in the 
figure corresponds to a distance of 7 to 25 cm from the leading edge. The 
data show a standing wave pattern having a wavelength of approximately 2 cm. 
This wavelength is close to what would be expected (using eq. (43)) if a 500 
Hz TS wave traveled downstream with a typical phase speed of l/3 UC0 and inter- 
fered with either the downstream or upstream traveling fundamental acoustic 
wave. The figure thus presents rather convincing evidence that the standing 
wave is the result of the superposition of the TS and acoustic wave fields. 

The dashed curve in the figure corresponds to the modeled level of the 
free-stream acoustic field strength. According to the model the data should 
oscillate about this curve in the upstream stable region where the TS wave 
amplitude is small, and the data do appear to exhibit this behavior. The 
line A/A = 1 has also been drawn on the figure. This line intersects the 
dashed cu&e at the Reynolds number of 990, showing that A0 has been modeled 
correctly. The line also shows the subjective element in the present modeling 
effort. Not much imagination would be needed to conclude that the data may 
be oscillating about the line A/A = 1. Statistical tests could be applied 
for more conclusive results, but this was not done in any of the modeling work. 

The data also show a rapidly increasing average signal level downstream 
of the critical Reynolds number. Again recall from the Introduction that the 
average amplitude of two sinusoidal signals equals the amplitude of the larger 
signal. The increasing signal level is thus consistent with the expected 
growth of the TS waves upon entering the unstable region. The data show that 
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somewhere in the Reynolds number range of 900 to 1000 the TS wave amplitude 
has exceeded the amplitude of the acoustic signal. A troublesome feature of 
the figure is that in the upstream supposedly stable region, where a diminution 
of the oscillations with increasing Reynolds number would be expected to 
occur, the data show the opposite trend. This problem will be addressed 
later. 

Because u,(x) was expected to vary over a considerable range and not 
be representable by a simple function, 
by a cubic spline. 

the decision was made to express u3 
The cubic spline (ref. 40) is a piecewise continuous 

cubic polynominal which can be made to pass through any number of points while 
having continuous first and second derivatives. With spline representation 

u3 would therefore be a smooth curve whose amplitude could conveniently be 
controlled by adjusting the points, or nodes as they are often called, through 
which the spline passed. Forty nodal points were distributed along the 
abscissa and covered the Reg, range of 600 to 2070. Points were clustered 
in regions where greatest control was needed; the closest points were a 
Reynolds number of 25 apart. The ordinate value of the nodes were then shifted 
as necessary to make G BPBL match the behavior of the A/A0 growth curve 

0 

data. Actually, there was one other factor considered while doing the matching, 
and this was the TS wave amplitude growth rate. 

Once u,(x) was determined, the TS wave amplitude growth curve, In u3/u3 
vs. Reg,, could be obtained, where u3 is the TS wave amplitude at the 0 

critical Reynolds number. The growth gate is the derivative of In u3/u3 

with respect to Reg,. The differentiation process makes readily apparen? 
any oscillations in the curve and thus inherently magnifies any scatter in 
the experimental growth curve data. The modeling process, on the other hand, 
is inherently a smoothing one, but judgement is required in the data matching 
and differences in judgement again become quite apparent under the differentiation 
operation. Furthermore, with the spline fit, the differentiated results were 
obviously sensitive to small shifts in the nodal points which were closest 
together. So while the ordinates of the nodal points were shifted up and 
down to match the model to the A/A data, a close eye was kept on the re- 
sulting growth rate curve to make sgre that it did not suffer excessive 
gyrations. 

The derivatives needed for the growth rate curves were computed numerically. 
A five-point linear smoothing differentiation formula was used to help reduce 
the oscillations (ref. 41). The Reynolds number spacing between the points 
was 20. The growth rate curves were plotted with the aid of a cubic spline. 

The amplitude of the A/A data was used to model the amplitude of the 
TS waves, and the wavelengths !?n the standing wave pattern could have been 
examined for the modeling of the TS wave number behavior, k (x). This procedure 
was not followed because over the range of 7 to 18 centimetzrs from the leading 
edge Shapiro presented detailed phase angle data which appeared to be more 
suitable to the wave number determination task. In a separate figure Shapiro 
presented somewhat less detailed phase angle data covering the distance from 
15 to 75 cm. As will be seen later, over this range the phase angle data 
provide a very sensitive indication of TS wave number behavior. This is indeed 
fortunate because beyond a distance of about 35 cm Shapiro's A/A data show 
no oscillatory pattern and it would be impossible to determine wa:e number 
information from the amplitude data. 
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Procedure for determination of .phase speed and wave number. - The TS wave -~---_I_~--_ 
phase speed c (x), 

2 
rather than the wave number, was the quantity which was 

directly adjus ed to make the periodicity of the model match that of the 
periodicity of the phase angle data. Since kc = w, either quantity could have 
been used. Furthermore, because the phase speed was not expected to vary much 
along the plate, a simple piecewise continuous first degree polynominal 
representation was chosen rather than the spline fit. (As will be discussed 
later, for large x the periodicity was not considered but rather the value 
of c,(x) was adjusted so that the mean phase angle growth matched that of the 
data). 

For comparison with theory the phase velocity and wave number needed to be 
suitably nondimensionalized. In stability theory the phase speed is nondimen- 
sionalized by the free-stream velocity and the wave number by a boundary layer 
thickness, which was taken here as the displacement thickness. The equation 
k = w/c may be written as 

kb* = 
us*/U, 

C/U, 
(14) 

and if dimensionless quantities are denoted with the superscript 0, eq. (14) 
becomes 

0 
k”= ” 

C 
where 

k" fJ.A* rkd*, c"=k, way- 
03 cm 

This quantity w" may further be expressed as 

WV m”= - 

u2 
Reg* 

co 1 
and the quantity WV/u& is recognized as the nondimensional frequency which 
was given as 5.6 X 10-5. The nondimensional wave number was therefore con- 
veniently determined from 

k" 
Reg* 

= 5.6 x 1O-5 y 
C 

Procedure for determination of $.+ and C$ . 4 - The phase angle 0 was 
measured, presumably, with respect to he signa fed to the loudspeaker. Since 
the leading edge of the plate was taken as x = 0, the quantity $I~ would 
be the phase angle with respect to the loudspeaker signal of the downstream 
traveling fundamental acoustic mode wave at the plate's leading edge. But 
in fact the value of $1 in the model has no such correspondence with the 
actual phase of the wave at x = 0. Shapiro did not describe how 0 was 
measured, but data taken in the test section alone would not be sufficient 
to determine the total phase angle. Because the initial measurement station 
was a few wavelengths away from the loudspeaker, the actual phase angle would 
have advanced by more than 360' through the settling chamber, and in the test 
section some multiple of 360° would have to be added to the measured angle 
to obtain the true angle. But there is no need to make such an absolute 
determination, for the primary interest is in the variation of 8 along the 
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plate. In fact, the initial measurement could be taken as any convenient angle 
and thereafter departures from this .value recorded. Regardless of whether 8 
was measured or adjusted, $1 should not be considered as physically significant. 
The A I$ values are the quantities with physical significance. 

To see how the choice of $1 affects the model results figure 3 can be 
used. Here the downstream and upstream traveling fundamental mode waves may 
be considered as being represented in part (a). The label states that the 
situation depicted is for x=10, but for the present purposes this should be 
taken as x=0. Since the angle between $I~ and $2 at x = 0 is fixed 
at A @12, changing $1 changes the angle of the vector sum by the same 
amount. As shown in part (c) of the figure, with small amplitude TS waves 
present, the angle 8 of the total signal oscillates about the angle of the 
sum vector, which is represented by the dashed line. Therefore, increasing 
or decreasing $1 while holding A @12 constant causes the dashed curve, 
and consequently the whole pattern, to shift up or down, respectively, on the 
phase angle plot. 
task. 

Finding a suitable value of @l was thus not a difficult 

Changing the TS wave initial phase angle $ shifts the oscillatory phase 
angle pattern to the right or left along the das ed 2 curve. This is more readily 
seen in figure 2. Again, it is not difficult to select an appropriate value 
for Q3. Since the phase angle data began at x = 7.5 cm rather than x = 0, 

was chosen to make the model best match the phase angle data in the range 
2 x = 7.5 to 10 cm. The value of @3 therefore depended strongly on the 
assumed TS wave phase velocity upstream of the 7.5 cm station. Over the range 
of x=0 to 10 cm c (x) 

2. 
was assumed to be constant. This was an appropriate 

but probably unrealis ic assumption, so again, a3 has no physical significance. 

Comparisons of measured and modeled values of A and 8. - With the phase - 
velocity initially taken as l/3 TJm, a rough variation of u3 with x was 
obtained. Then, in an iterative fashion, refinements were made on c3 and 

2' 
with consideration given to keeping the derivative of u3 fairly smooth. 

e resulting values of the phase angles were: 
e3 = 180°. 

@l = -55O, $ = 3', and 
There is a story, to be told later, concerning 3 3. 

Figure 9 shows a comparison of the lower Reynolds number A/A data 
values with the modeled simulation. Considering the somewhat erratyc behavior 
of the data, the fit of the model to the data is not too bad. Under the 
assumption that the stronger signal levels could be measured more accurately, 
there was a bias towards fitting the data peaks more closely than the valleys. 
For Reynolds numbers of less than 1000, the bias resulted in the model over- 
estimating the data minima. This behavior needs further study. The cyclic 
property of the data is well matched for Reynolds numbers greater than about 
850, but below this value there appears to be a phase difference between data 
and model. As will be shown shortly, there is a good match between the phase 
angle data and the modeled phase angles over this Reynolds number region, so 
this discrepancy between model and data also needs further study. Although 
not discernable in the figure, the numerical results from the model show that 
the TS wave amplitude exceeded the acoustic signal amplitude at a Reynolds 
number of 949, a value corresponding to x = 15.73 cm. 

In figure 10 the In A/A data and model values are shown over the com- 
plete Reynolds number range o Y the test. The data and axes are from an 
enlarged reproduction of Shapiro's report figure. The asterisks have been 
added to indicate the distance from the leading edge in decades, starting with 
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x = 10 cm. The model matches the data's oscillatory behavior out to a Reynolds 
number of about 1300 (x 2 30 cm); thereafter Shapiro increased the spacing 
between his measurements and could not follow the cyclic behavior. The data 
and model show the expected decrease in oscillation amplitude as the TS wave 
amplitude becomes quite large (the eccentricity of the TS spiral becomes 
small). 

The measured and modeled phase angles are shown in figure 11. The arrow 
is the same symbol used by Shapiro to indicate that 8 continues to increase 
with increasing x. Before going into the data-model comparison there is an 
apparent anomaly in the data which must be discussed. The problem is in the 
relation between the phase angle 8 and the signal amplitude. Figure 2 is 
helpful in this matter. From figure 2(b) it is clear that, with increasing 
x, as A increases from a local minimum to a local maximum, 8 goes through 
a local minimum while changing from one midpoint to the next. This behavior 
may be observed in parts (c) and (d) of the figure (examine, for example, 
the curves from x = 3 to 4). Shapiro's data, however, shows the opposite 
behavior. With increasing x, as the amplitude A goes from a minimum to a 
maximum the value of 8 goes through a maximum while changing from one mid- 
value to the next. This may be clearly seen in figures 10 and 11. In figure 
10, over the Reynolds number range of 870 to 900, for example, the amplitude 
goes from a valley to a peak, while in figure 11 the phase angle traverses 
a local maximum over the corresponding range of x = 13.2 to 14.2 cm. The 
modeled phase angle also follows this anomalous behavior because the model 
was manipulated; the phase angle of the TS wave has been increased by 180'. 
This is the aforementioned story in connection with @ . The amplitude results 
were plotted with Q3 = 0, while the phase angle resul 2 
Q3 = 180°. 

s were plotted with 
In figure 12 the amplitude calculations have been replotted with 

$I = 180° to match the conditions of the phase angle figure, and the data and 
mzdel results do appear to be 180° out of phase. 

The present writer has no explanation of the data's amplitude-phase 
behavior. The 180' factor immediately suggests some kind of accidental polarity 
reversal in the experimental wiring hookups, but reversing an electrical wire's 
connection to an instrument or device would not produce the effect. The rms 
amplitudes would not be altered by such a reversal. The phase angle at the 
initial measuring station would be changed by 180°, but the subsequent down- 
stream variation would be unaffected. There is also a possibility that Shapiro 
did not use the same distance-to-Reynolds number conversion as used here, but 
the conversion consistency was demonstrated earlier. 

This data peculiarity presented a modeling dilemma, and the dilemma was 
bypassed using a hybrid matching procedure; the amplitude was modeled with 
$3 = 0 and the phase angle with $3 = 180°. Either value of $ could have 
been used consistently, but the data matching was simpler when t 2 e model and 
data oscillated in phase. The final results would probably differ little 
with either hybrid or consistent matching. 

Returning to figure 11, it should be restated that the phase angle data 
were used to model the TS wave phase velocity only. While the amplitude of 
the phase angle oscillations does depend on the TS wave amplitude and could 
therefore have been used in the modeling of u3 (4 , this was not done. The 
fact that the amplitude of the phase angle oscillations in figure 11 has been 
modeled well attests to the fidelity with which the 
data. 

u3 (4 modeled the A/A0 
The phase velocity affects only the periodicity, and the sensitivity 

of the periodicity to the phase velocity is illustrated in figure 13. Here 
the phase angle behavior is shown for three different nondimensional phase 
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velocities, c /Uoo, 3 of 0.33, 0.35, and 0.37. In each case the value of 
was altered so that the curves all began at the same point. $3 By comparing 
figures 13 and 11 it is clear that with the scatter in the data it would be 
difficult to narrow the choice of a phase velocity value to closer than 0.02. 

As seen in figure 11, the periodicity has been modeled fairly well except 
for the last cycle of the data, which the model missed completely. The con- 
dition likely means that either (1) the modeled TS wave amplitude growth is 
slightly in error in having exceeded the acoustic field amplitude a little 
too soon, or (2) the extra cycle represents a slight experimental error. 
Concerning the first possibility, the model showed the TS wave amplitude ex- 
ceeded the acoustic field amplitude at x = 15.73. The computed phase angle 
at this point was 56O, and on the complex-plane diagram the TS outward spiral 
would, within a short distance, encompass the origin. This in fact occurred, 
for just a half centimeter downstream the phase angle underwent a rapid 
increase beyond 180°. Had the modeled TS wave amplitude been a little smaller, 
the origin would not have been encompassed, and near this location the phase 
angle would have undergone a rapid swing to some negative angle close to 
-900. 

The model also shows that it would have been difficult to have experi- 
mentally detected a behavior similar to that exhibited by the model, and this 
raises the possibility that the data are in error. 
that the first time the phase angle exceeds 90' 

The computations show 
the angle remains in the 

second and third quadrants only over a short distance. If there are no data 
stations in this region, and if the next station happens to be where the phase 
angle is in the fourth quadrant, then the angle could be interpreted as being 
between O" and -90° instead of 270° and 360°. In the particular circumstances 
here, the model shows that the phase angle was only in the second quadrant 
from x = 16.04 to x = 16.25, and was in the third quadrant from 16.25 to 
16.34. The nearest data points appear to be at x = 15.78 and 16.45, and 
consequently there may have been no data stations where the phase angle was 
between 90° and 270'. If 360° were to be subtracted from the computed angles 
greater than 270°, a resulting plot would closely follow the last four data 
points in figure 11. 

Even if the data station spacings were adequate to catch the phase angle's 
traverse of the second and third quadrants, the model shows that it would be 
no easy task to measure the angle accurately. The resultant amplitude of the 
signal for the three waves considered in the model is very small in this 
region (the TS spiral is passing very near the origin on the complex-plane 
diagram). Under such conditions the experimenter would likely encounter 
signal-to-noise problems. According to the present model, when the phase 
angle first reached 180 o the ratio of the signal component from the three 
waves to the total signal (which included the evanescent terms) was only 0.17. 
Thus the signal would have been buried in the noise. The noise is considered 
here to have a random phase angle behavior. In any event, while the model- 
data discrepancy in figure 11 looks bad, it should not be considered as a 
serious one. 

The phase angle data and model results covering the remaining x = 16 
to x = 75 range are shown in figure 14. The figure is again an enlargement 
of the Shapiro figure with the model results superimposed. Shapiro plotted 
the data in two groups, with each group having a separate linear growth 
removed. For a constant TS phase velocity the phase angle should oscillate 
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about a linear growth curve. In the modeling the indicated growth rates were 
also removed. In the first data group the spacing between data stations 
beyond x = 37 cm was too large to follow the oscillating behavior. In 
the data overlap region it appears that the data points in the first group 
represent local phase angle minima points, but Shapiro did not state what 
criterion he used for the large-spacing data points. Based on the model 
and the data in the x = 32 to 35 range it would appear reasonable to assume 
that the oscillations were so small that there was no need for taking data 
at close intervals. Yet the data in the second group clearly show oscillations 
over the x = 50 to 55 range where, because the TS wave strength is greatest, 
the oscillations should be smallest. The lack of agreement between model and 
data of the amplitude of the phase angle oscillations over the x = 51 to 
70 range is puzzling. 

As before, the TS wave phase speed behavior could be determined by modeling 
the periodicity of the oscillations in the phase angle data whenever the data 
oscillations were presented. The periodicity is reasonably matched by the 
model, but, in fact, the periodicity was not the criterion used in the modeling 
of the data in figure 14. The quantity used in the modeling was the mean 
growth rate (this procedure could not, of course, have been used for the data 
of figure 11). The phase speed was varied so that the mean behavior of the 
model reasonably matched the mean behavior of the phase angle data. If this 
is done well and if the model has incorporated the primary physical phenomena 
involved, than the periodicity should naturally fall in place. That the mean 
behavior of the phase angle is quite sensitive to the TS wave phase speed is 
shown in figure 15. It is immediately apparent that the phase speed over the 
last 25 cm is 0.34. The slope of the mean of the data strongly depends on the 
phase speed. A phase speed difference of 0.02 would clearly be discernible 
over a distance of 2 cm. Such was not the case for the region upstream of 
x = 16 cm. 

The mean behavior of the data in figure 14 has been modeled well except 
in the regions of x = 36 to 40 and 43 to 48. If the model had been tailored 
to follow the data in these regions, two spikes in the phase speed (5% changes) 
would have occurred, but the decision was made to smooth. 

TS wave amplitude growth and growth rate results. - The resulting TS wave __-_-_l_ ~- _- 
amplitude growth curve, in the form of In u3/u3, is displayed in figure 16. 

As is expected, beyond a Reynolds number of abou? 1000 the shape of the curve 
is the same as that of a curve faired through the A/A data. In the lower 
Reynolds number range the growth curve behaves more ak?n to a curve faired 
through consecutive (A/A0 - A/A 

0 . )/2 points. The growth curve does not 

truly match this behavior ygcause &snmodel overestimated the low Reynolds 
number data minima. Numerical differentiation of the displayed growth curve 
produced the growth rate curve shown in figure 17. 

In figure 17 the modeled growth rate curve is compared with that obtained 
by Shapiro and with amplification rates from flat plate stability theory.* 

*The author gratefully acknowledges the help of Dr. Mujeeb Malik, Systems and 
Applied Sciences Corporation, for providing the stability code and setting up 
the input procedure for the determination of stability results with the present 
frequency. The code is described in reference 42, and unless a specific reference 
is given, all results labeled as Theory come from this code. 
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The amplification rates are spatial rates obtained from a temporal analysis 
using Gaster's transformation (refs., 43 and 44) whereby the spatial rate equals 
the negative of the imaginary part o'f the eigenfrequency divided by the group 
velocity. Due to numerical limitations only the positive theoretical amplifi- 
cation rates are shown; the parabolic shape of the curve of course extends into 
the negative region. Shapiro's curve is reported to represent an average of 
three data runs; the bars, also taken from Shapiro, indicate the approximate 
deviation of the data. Shapiro obtained amplification rates by differentiation 
of his growth curves, but because of his fairing procedure the low Reynolds 
number results must be in error. (Readers are also invited to try their hand 
at fairing the growth data shown back in figure 8 . If this data is typical, a 
fairing taken between the dashed and solid lines does not seem unreasonable up 
to a Reynolds number of about 950, and the resulting "growth rate" would appear 
to differ significantly from Shapiro's). As explained in the Introduction, 
fairings through the low- and high-Reynolds number data should in fact not join 
smoothly. To force them to do so would require some compromising. Because of the 
fairing technique, Shapiro's results would perhaps be expected to be in better 
agreement with the present results for Reynolds numbers greater than a 1000 or 
so. Such are the vagaries of fairing, differentiating, and using fifth-hand 
reproductions and enlargements of original figures. 

There are two striking differences between the presently derived experi- 
mental amplification rates and the theoretical values. The maximum rates 
appear to have been truncated (the curve displays a post-eruption Mt. St. 
Helens profile) and positive amplification rates occur upstream of the critical 
Reynolds number. Shapiro attributed most of the amplification rate behavior 
to pressure gradient effects, and this appears to be a reasonable explanation. 
In fact the present results may be reflecting the pressure gradient effects 
to a greater degree than shown in Shapiro's findings. 

Pressure gradients affect stability in two important ways; they change the 
critical Reynolds number and they alter the amplification rates. An adverse 
gradient lowers the critical Reynolds number and increases the amplification 
rates while a favorable gradient produces the opposite effects. In the ex- 
periment the largest gradients were the result of the leading edge conditions. 
Recall that this region was semi-elliptical in shape, with a 6:l axis ratio, 
and extended back 3.81 cm. Based on numerical studies this shape was chosen 
as one suitably satisfying the conflicting needs of short length and small 
pressure gradients. Shapiro's plate had pressure orifices located at what 
appears to be 5.08 cm (2 in) intervals beginning at about 5 cm from the leading 
edge, with an additional orifice near x = 2.5 cm. The measured pressure 
distributions were displayed in two separate figures. In one figure the 
variation of pressure with length was shown and in the second the variation 
with Reg, was exhibited. 

Shapiro reported that surface pressure calculations were performed by 
M. Davis using a program by J. Milgram. The theoretical results were not 
shown, but they can be inferred from the curves presented by Davis in reference 
45. Using the computer program of Milgram, Davis presented pressure coefficient 
distributions for various flat plate leading edge shapes, including those 
with elliptical leading edges (the axis ratios were 2, 4, and 8, but the 
results for 6, needed here, can be easily estimated). Shapiro presented his 
pressure coefficient results using an unspecified reference pressure, so a 
direct comparison with Davis' numbers cannot be made, but from the shape of 
the distribution curves it is clear that the measured pressure distribution 
differs markedly from the theoretical result. Based on the theoretical findings, 

43 



the pressure on Shapiro's plate would be expected to reach a minimum at 
x r 0.95 cm, to recover to about half the pressure minimum by x 2 2.5 cm, 
and by x = 5 cm the pressure gradient would be extremely small. The data, 
however, show that at x =: 2.5, the location of the first orifice, the pressure 
is falling with a very steep gradient. The pressure minimum occurs in the 
vicinity of the second orifice at x =: 5 cm. The pressure then recovers to a 
local maximum near x = 20 and then slowly falls to a second local minimum in 
the vicinity of x = 60. If the computational results are correct, then there 
must have been problems with the plate's geometry and perhaps with some 
pressure gradients in the free-stream. If this is the situation then it is a 
most encouraging one, for it leaves hope that perhaps a similar experiment 
could someday be conducted with a much improved pressure distribution condition. 
As will be demonstrated below, the TS wave behavior in Shapiro's experiment 
appears to have been markedly influenced by the pressure gradients. 

First, it should be mentioned that there is a discrepancy between the 
distance and Reynolds number pressure distribution figures. The minimum pres- 
sure, which occurs near the second orifice, is plotted on the Reynolds number 
figure with a value approximately 2.2 times more negative than its value on 
the distance figure. This data point is important because it determines the 
location of the maximum adverse pressure gradient. If the value nearer zero 
is correct then the maximum adverse pressure gradient occurs in the region 
between the third and fourth orifice. If the more negative value is correct 
then the maximum adverse pressure gradient occurs, and is nearly constant, over 
the region from the second to the fourth orifice. In terms of Reynolds numbers, 
in the former case the most adverse pressure gradient extends, approximately, 
over the 740 to 920 range, and in the latter, over the 580 to 920 range. As 
shown in figure 17, the presently derived amplification rate curve begins a 
rapid increase near Reg, = 750, and this behavior is consistent with the 
pressure data if the minimum pressure point which is nearer to zero is accepted 
as the correct value. 

The general behavior of the amplification rate curve does exhibit, at 
least qualitatively, a considerable correlation with the pressure gradients 
along the plate. This may be judged by examining the curve and the following 
qualitative description of the pressure gradients. The gradients and approximate 
Reynolds number range over which they occur are as follows; the numbers in 
parentheses times the dynamic pressure, % p, LJ: , provide a rough indication 
of the magnitude of the gradient per centimeter: very favorable (-8.7 X lo-3), 
370-530; very unfavorable (1.7 x 10-3 - 3 X lo-3), 530-920; transition from 
unfavorable to favorable, 920-1190; moderately favorable (-3.3 x 10s4), 
1190-1500; slightly unfavorable, 1500-1600; moderately favorable, 1600-1770; 
transition from favorable to unfavorable, 1770-2000; moderately unfavorable 
(2.4 x 10-4), 2000-2300. The complete low Reynolds number region (Re -k < 1060) 
for which TS wave data are available is under an adverse pressure gra 5 lent. 
The "premature" positive growth rate is consistent with the pressure gradient 
effect and consequently little, if any, quantitative information can be obtained 
about the sound-instability problem. An unfortunate circumstance indeed. 

There is a puzzling aspect: of the TS wave behavior which should be reported. 
This concerns the critical Reynolds number. The effects of pressure gradients 
on boundary layer stability have been the subject of much theoretical study. 
The report by Obremski, et al. (ref. 21) contains the stability characteristics 
of two families of laminar boundary layer profiles: (1) the Falkner-Skan 
family, a one-parameter self-similar set of profiles, and (2) the Obremski 
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family, a nonsimilar three-parameter set of profiles. Numerical solutions of the 
stability equations were obtained, and the results were displayed in tables 
and stability diagrams. The Falkner-Skan family may be characterized by the 
so-called Hartree parameter B (see, for example, ref. 25). For 
-0.199 5 8 5 0, 8 relates to retarded flows, and in particular, to flows 
downstream of corners. In the inviscid case, the surface flow downstream of 
a corner is described by U, c~ x8/(2-8). Negative values of 8 thus describe 
retarded flows, and in the inviscid case, since dp/dx = - pU dU/dx, negative 
values of 8 also characterize adverse pressure gradients. In the Falkner- 
Skan laminar boundary layer solutions the velocity gradient is zero at the 
wall for 8 2 -0.199, and consequently this value of B gives the flow 
separation condition. Shapiro stated that an approximate value of 8 
for the adverse pressure region was -0.03. (No details given; Leehey, who 
was Shapiro's supervisor, gives the value as -0.05 in ref. 5). Based on an 
examination of the stability diagrams for various values of 8 in the Obremski 
report, the present writer found the following B-critical Reynolds number 
pairs for the nondimensional frequency of 5.6 X 10D5: 0.05, 1160; 0.0, 980; 
-0.05, 840; -0.10, 720; and, -0.14, 640. Interpolating these values gives a 
critical Reynolds number of 900 for (3 = -0.03. This Reynolds number is well 
downstream of wave growth in Shapiro's experiment. Rapid growth begins at 
Reg* 2 750, and if this represented the critical Reynolds number value, the 
corresponding value of 8 would be about -0.085. Inasmuch as some growth 
actually occurs upstream of Re 

$" 
= 750, the 750 value should not strictly 

be taken as the critical Reynol s number. This value could perhaps be con- 
sidered as the critical Reynolds number if the relative slow growth in the up- 
stream region were the result of sound feeding energy into the TS waves and not 
from an instability mechanism. One of the purposes of the experimental 
investigation was to determine how the sound field affected TS wave development, 
but as stated above, the pressure gradients have clouded the issue. 

The variation along the plate of the ratio of the amplitude of the 
longitudinal velocity fluctuation level associated with the TS wave to that of 
the acoustic field at the leading edge has been plotted in figure 18. The 
modeled low Reynolds number results are shown in the figure, and, as always 
in this study, the TS wave amplitude at any station is to be considered as the 
maximum value across the boundary layer of u(y)/U(y> (which generally occurs 
near y/6 W 0.2). The figure shows that the TS level continuously increases 
and that at the earliest data station the TS amplitude has already reached 
about 25% of the initial acoustic level. This value is very much larger than 
the theoretical estimate by Murdock (ref. 4) of 0.01% at the critical Reynolds 
number location (see the discussion in Additional Background section). Because 
of unknown pressure gradient effects the theoretical value can not be adequately 
assessed, although very large gradient-induced growth rates would have had to 
occurred upstream of Reg, = 650. Since all flat plate models will always have 
pressure gradients present in the leading edge region, it may well be incumbent 
on the theoretician studying the acoustic-instability problem to trace the wave 
growth through the pressure fields; with present technology the experimenter 
cannot probe this upstream region. 

It should be noted that Shapiro also reported growth rate results for 
the natural, unexcited case. One of the actual growth curves was shown, and 
while there are some oscillations present, their magnitude is small and a 
fairing procedure would produce little error (according to Leehey, ref. 5, 
this data was obtained with the 500 Hz narrow bandpass filter in place). For 
the data shown it appears that amplification occurred in the 750 to 850 
Reynolds number range, and continued at a lower amplification rate out to 
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about Reg, = 1000. Thereafter a large increase in amplification began. 
Shapiro's amplification rate curve, averaged over three data runs, shows an 
amplification rate beginning near zero and increasing roughly linearly with 
Reynolds number up to a value of 1600 where the rates matched those of the 
excited case. Beyond 1600 the growth rates for both cases were in good 
agreement. The low initial growth rate for the unexcited case was attributed 
to their being TS waves of comparable initial amplitudes propagating in many 
directions in the lower Reynolds number regions. The oblique waves have lower 
growth rates than two-dimensional waves and the measured growth rate would 
reflect the lower average value. Further downstream the two-dimensional waves 
would dominate independent of the source of excitation, and the measured growth 
rates should converge for all cases. Estimated values of the critical Reynolds 
number, now used in its proper sense (all frequencies considered), read from 
figures in reference 21 are: 
is 520); -0.05, 315; 

6 = 0.05, Reg, = 860; 0.0, 515 (correct value 
-0.1, 198; and -0.14, 136. A 8 of -0.03 has a critical 

Reynolds number of about 780 and this is close to where a small amount of 
amplification occurred. For Reg, < 750 it is difficult to assess from the 
data what was happening in the boundary layer. 

A testing of the above hypothesis that the measured low growth rates are 
due to oblique waves could perhaps be done with an interesting acoustic ex- 
citation experiment. Growth rates could be measured and compared for the cases 
of acoustic excitation at frequencies below and just above the cutoff frequency 
of the tunnel's first mode. The fundamental plane acoustic wave is likely to 
dominate the acoustic field at both frequencies, but for the higher frequency 
case there could be a substantial oblique wave component at some known angle. 
If the two-dimensional and oblique waves set up respective two-dimensional 
and oblique TS waves, and if the initial TS wave amplitudes are proportional 
to the strength of their respective acoustic exciters, then the measured growth 
rates at the lower Reynolds numbers should be perceptively different in the two 
test runs. A nicer experiment would be one in a tunnel with a moveable side 
wall. Frequency and mean flow conditions could be held constant, and by moving 
the wall in and out the tunnel's first mode could be cut off and on. 

In this and in any stability experiment in which acoustic excitation 
is used, the boundary layer probe should not be held at one longitudinal 
station while the frequency is changed. This is obvious now, but the point 
bears emphasis. Clearly, the rms output of a stationary probe will show 
cyclic oscillations as the frequency (and hence wave number) of the acoustic 
field is allowed to change. 

A final thought before leaving the amplitude section. The matching of the 
model amplitude to those of the data has been done here in a subjective manner, 
and this fact probably has been emphasized enough. But while the matching of 
model to data has generally been good, there always existed a suspicion in the 
writer's mind that the match was in fact quite poor and that the trend of the 
data was entirely missed. To show how such suspicions can arise, consider 
figure 19 (a). In this figure the TS wave has been modeled with a constant 
amplitude; R3 = u3/u1 = 0.9. For Reynolds numbers of less than 950, one could 
perhaps be convinced that this modeling is just as valid as the one which was 
actually used. Consider the following argument. The data's first local 
minimum and maximum points are not matched well, but neither were they in the 
original model. The second data minimum has a good match. The second data 
maximum appears to have been truncated due to some experimental error, and 
except for the error the match would have been a good one also. The third data 
minimum has a truncation problem as well. The rest of the data is matched well 
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except for the fifth minimum, and this minimum has obviously undergone an 
erroneous truncation. This plausible model gives a low-Reynolds number TS 
wave growth rate of zero! Quite a different trend from the original modeling 
result. What is to be done? Fortunately the corresponding phase angle data 
are also available for comparison and this is done in figure 21 (b). The 
resulting phase angles do not match the data well at all. At the smaller 
distances the amplitude of the phase angle oscillations is much too large. 
This shows that the R3 = 0.9 modeled TS wave amplitudes at the smaller 
Reynolds numbers are in fact too big. This exercise did allay some fears. 
(But what about that first data minimum and those truncations and that 180' 
phase shift?) 

Phase velocity and wave number results. - A comparison of the nondimen- 
sional phase velocities derived -from the model with theoretical values are 
shown in figure 20. For convenience, the variation with Reynolds number 
is shown in figure part (a) and with distance in part (b). The phase velocity 
representation by piecewise continuous first degree polynomials is clearly 
evident in part (a). For x 5 14 cm, a double values result is given, and 
this was due, as explained earlier, to the difficulty in modeling the velocities 
in this region. For x > 17, the modeled speeds are within 2% of the theo- 
retical speeds for two-dimensional TS waves. This is striking evidence that 
the principal phenomenon modeled was TS wave propagation. The theoretical 
results from reference 26 were obtained by interpolating with a cubic spline 
the tabulated values in tables which contained results near the nondimensional 
frequency of 5.6 x 10W5. These values were then plotted in figure 20 using a 
cubic spline interpolation. The wave number results shown in figure 21 reflect 
the phase velocity findings since the wave number involves the reciprocal of 
the phase velocity. The difference between the flat plate theory and the 
experimentally derived results for the lower Reynolds number region, Re 
980 and x < 17 cm, 6* < will be ascribed to the influence of the adverse pressure 
gradient. Adverse pressure gradients cause an increase in the laminar boundary 
layer displacement thickness (see, for example, Table 5.1 of reference 46 for 
formulas appropriate for Falkner-Skan flows). From the stability diagrams 
shown by Obremski, Morkovin, and Landahl (ref. 21) for adverse pressure gradient 
flows, it can be seen that increasing 6* above the flat plate values will in- 
crease the phase speed of a given frequency disturbance in the unstable region. 
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CONCLUDING REMARKS 

The primary purpose of the present study is the reevaluation of the hot- 
wire anemometer amplitude data contained in the 1977 subsonic flat plate 
acoustic boundary layer instability investigation report of P. J. Shapiro 
entitled, "The Influence of Sound Upon Laminar Boundary Layer Instability." 
As shown here, the low-Reynolds number boundary layer disturbance data were 
misinterpreted and the present effort was made to improve the corresponding 
disturbance growth rate curves. The data show a standing wave pattern along 
the plate and it is known that this can be satisfactorily explained as being 
due to the superposition of the free-stream sound waves and the laminar boundary 
layer instability Tollmien-Schlichting (TS) waves. To extract the TS wave 
amplitude and phase velocity information the data were modeled as the sum 
of acoustic waves and a wave representing the TS wave. Using the free-stream 
disturbance data, the sound field was modeled by a primary downstream trav- 
eling sound wave, a weak reflected upstream traveling wave, and nonpropagating 
"noise" terms representing possible decaying evanescent sound fields at each 
end of the test section. The amplitude and phase velocity of the TS wave 
were then adjusted so that the total signal reasonably matched the amplitude 
and phase angle from hot-wire data along the laminar boundary layer on the 
plate. 

Except for the region upstream of the rapid increase in boundary layer 
disturbance growth, the resulting phase velocity variation of the third wave 
was within 2% of the theoretical two-dimensional TS phase speed, thus showing 
that the third wave indeed represented a TS wave. In the upstream region the 
speeds were about 10% higher than the flat plate values, but the increase is 
qualitatively consistent with the adverse pressure gradient existing in this 
region. The TS wave amplitude at the earliest measurement station was 0.25 
times the sound field amplitude near the leading edge. Shapiro's TS growth 
rate curves showed growth ahead of the theoretical flat plate stability neutral 
point, and the revised rates show growth occurring even further upstream. 
It appears that the premature growth is due to the adverse pressure gradient 
created by the shape of the plate. One of the purposes of Shapiro's investi- 
gation was to determine if the sound could be affecting TS wave growth along 
the plate, but the pressure gradient has prevented such a determination. 
Comparison of the measured pressure distribution with published theoretical 
distributions for plate leading edge shapes similar to Shapiro's shows con- 
siderable disagreement. Obviously, it would be desirable to reduce the 
pressure gradients in future experiments. 

Acoustic excitation experiments are important to the boundary layer tran- 
sition problem because sound pervades the aircraft and wind tunnel flow environ- 
ment. But these experiments are difficult ones to satisfactorily conduct 
because of the problem of establishing a controlled acoustic field. Some of 
the basic elements of sound propagation in ducts have been reviewed in the 
present report. Sound field measurements are an important part of tunnel 
experiments which are affected by sound. Shapiro's test section sound measure- 
ments may have been taken with the flat plate removed. Since the presence 
of the plate would be expected to alter the field somewhat, the modeled sound 
field may not have been the most appropriate. However, the resulting error 
introduced in the modeled TS wave amplitude would probably be small. 

Some of the experimental and theoretical acoustic-stability literature was 

48 



reviewed in the report. There seems to be a growing consensus that the acoustic- 
boundary layer interaction in the leading edge region is the source of the TS 
waves, at least for two-dimensional flows, and that away from the leading 
edge there is no significant interaction between the sound and TS waves. 
Additional experiments along the line of Shapiro's are needed for experimental 
verification of the latter contention. Finite amplitude TS wave behavior in 
two-dimensional flow can now be studied numerically. But since all wind 
tunnel model flat plates have leading edge regions with pressure gradients, 
it will be difficult to obtain meaningful comparisons between theoretical and 
experimental TS wave amplitudes unless some assessment of the gradient effect 
is made. 
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APPENDIX 

ELEMENTS OF SOUND PROPAGATION IN DUCTS 

In duct acoustics one deals with wave propagation inside enclosures which 
have changing dimensions and directions, and often, as in the present case, 
contain flow. In constant area ducts there is attenuation of the sound field, 
with most of the energy losses usually occurring at the walls due to absorption 
during reflections. Even if the walls are quite rigid, viscous losses occur 
in the so-called acoustic boundary layer which results from the no-slip condition 
at the surface. Abrupt changes in the duct cross-sectional area produce 
reflections and hence alters the transmitted energy along the duct. With gradual 
contractions or enlargements the sound energy can be concentrated or diffused 
and thus amplification as well as attenuation of sound levels can occur. If 
temperature gradients are present the sound field is altered by refraction effects. 
Likewise, if a flow field exists the velocity gradients can produce refraction 
effects. If the duct contains a nozzle and if appreciable changes in velocity 
occur, this change and the attendant changes'in density and temperature can 
appreciably affect the sound field. At the higher speeds the wall turbulent 
boundary layer itself can significantly add to the noise level. Clearly, duct 
acoustics challenges both the theoretician and the noise controller. With the 
interest in noise abatement, it is no wonder that the literature is extensive. 

The basic discussion topics will be restricted to those relevant to the 
test section which Shapiro used. The tunnel was at the Massachusetts Institute 
of Technology, and the facility will herein be referred to as the MIT tunnel. 
The test section had straight walls, was open at the downstream end, and had 
a low flow velocity (M - 0.08). From modeling, analysis, and discussion view- 
points, these are convenient features. Rigid walls were originally used, but 
the resulting sound field had unacceptably large spatial variations. The non- 
uniformity was reduced by lining the walls with an acoustically absorbent 
material. The relevant discussion topics will therefore be: plane progressive 
waves, standing waves, reflections from an open-ended duct, traveling waves 
undergoing side-wall reflections (transverse modes), attenuations, and the 
effects of flow. The last two subjects, attenuation and flow effects, are so 
complex that they will necessarily be discussed in a more qualitative fashion. 

Plane Progressive Waves 

Plane waves are generated in practice by two means. The first is by using 
a sound source and working in its so-called far-field region. At large 
distances from a source the waves are essentially spherical waves, but if 
the working region is small the amplitude decay with distance due to spherical 
spreading can be neglected and the waves can be considered locally as plane 
waves. This method was mentioned earlier in connection with placing a loud- 
speaker well upstream of the test section. The second method consists of 
placing the source in a rigid tube and generating waves in the frequency range 
where the wavelength is long in comparison with the tube diameter. It will 
be shown later that only the plane wave mode can be sustained in such a case. 

For the case of a medium with no flow, one form of the plane wave equation 
is 

a26 2 a2E -cc - 
at2 ax2 
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where E is the particle displacement from equilibrium position along the 
x-axis and x is the equilibrium coordinate of a particle of the medium. 
Similar equations exist for other acoustic variables (ref. 31, p. 113) such 
as particle velocity u, acoustic or excess pressure 
P is the instantaneous pressure and PO 

p (p = P-P,, where 
the equilibrium pressure in the medium), 

condensation o (the fractional change in density defined by o = (p-p,>/o,), 
and velocity potential (defined such that the particle velocity is the negative 
of the gradient of the velocity potential). Once the solution for E has been 
obtained, the behavior of the other acoustic variables can be obtained from 

p = -p c2 s , ae ae -- 0 U73T 3 ‘= ax (15) 

The most general solution of the wave equation is (d'Alembert's solution) 

& = f 1 (x-ct) + f 2 (x+ct) 

where fl and f2 are completely arbitrary functions of the arguments (x-ct) and 
(x+ct) and represent independent traveling waves moving with speed c in the 
positive and negative directions, respectively. The sinusoidal wave is a 
particular solution of the wave equation and is, of course, of special impor- 
tance. Sources of many waves vibrate periodically, but the primary importance 
of the sinusoidal function in wave theory is that they are the simplest of 
periodic functions and all functions which occur in practice can be represented 
by Fourier's theorem as a sum or integral of sinusoidal functions. 

For a plane progressive sinusoidal wave in an infinite medium with no 
reflections, the complex particle displacement is 

2 = i .i(kx-wt) 

where the initjal phase angle has been absorbed by the complex amplitude i, 
i.e., A = A el@. The other acoustic variables are, using eq. 1$, 

+j = -ip CL02 (16) 0 
G= -i w 2 (17) 

6=-ikE^ 

Because the density term in the formulas to be used will always mean the 
equilibrium density, henceforth the subscript on density will be omitted. For 
plane waves traveling in the positive x direction the acoustic pressure, 
particle velocity, and condensation are in phase with each other and differ 
from the displacement by 90' of phase angle. From equations (16) and (17) 
it is seen that for plane progressive waves 

p^=pcG 

and hence the rms value of the fluctuating pressure is proportional to that of 
the fluctuating velocity. For the plane progressive wave situation, equation 
(18) allows both pressures and velocities to be determined from measurements 
using either microphones or hot-wire anemometers. 
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Standing Waves 

In the more general one-dimensional case boundaries are present and wave 
reflections occur. With a reflecting surface present the solution of the 
plane wave equation consists of the sum of incident and reflected waves. 
The solution in complex form is thus 

e = ;i .i(kx-wt) + ; e-i(kx+wt) 

Letting 

E^+ 
= i .i(kx-wt) 

and 

e = B .-i(kx+wt) 

denote the progressive waves traveling in the positive and negative directions, 
respectively, then 

and the other important acoustic variables are 

i;= -ipcw (C+ - E^ ) 

G= -iw (E^+ + e ) 

^a= -ik (C+ - C ) 

Of particular interest here are the rms values of the acoustic Eressure and 
particle velocity. The rms value of a wave signal of the form s^ = A ei(kx-wt) 
is the square root of the average of the real part of the expression squared, 

and it is easy to show that this value is simply & g 2 * , where the asterisk 
denotes the complex conjugate (i.e., the value of s^ with i replaced by -i). 
Using the fact that the conjugate of a sum or product of two values is the 
sum or product of the conjugate of the values, the rms values of the acoustic, 
pressure and particle velocity are quickly found to be 

F = pcwA [l+R2-2Rcos(2kx+$A-$B)] 

ii = WA h ,[l+R2+2Rcos(2kx+@A-$B)] 

(19 ) 

(20) 

where R = B/A and use has been made of the identity 2 case = e i0 + e -iO . 
Equations (19) and (20) show that the rms values of the fluctuating pressures 
and velocities vary cyclically with a wavelength which is half that of the 
component waves. Furthermore, since cos(8+Tr) = -cosq, equation (20) may 
be written as 

6 = WA [l+R2-2Rcos(2kx+$A-%+~)] (21) 
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and comparison of equations (19) and (21) reveals that p" and u are 180' out 
of phase. Hence at a location where the acoustic pressure is a maximum the 
fluctuating velocity is a minimum, and vice versa. Measurements at more than 
one station are needed to show the presence of a standing wave, and thus, in 
contrast to the progressive wave case, it is not possible to determine both 
fluctuating pressures and velocities with a single measurement using a microphone 
or hot-wire anemometer. The plane wave assumption is often made in acoustic 
measurements, and justifiably so, but the plane wave relation 6 = p c G is 
strictly valid for progressive waves. Inside enclosures standing waves are 
usually present, and the plane wave pressure-velocity relation must be used 
with caution (it is not unusual to see the relation used with no apparent regard 
for the standing wave problem). An appropriate example for stability and 
transition researchers of the difference in behavior of 6 and G when a 
standing wave is present may be found in the classic stability investigation 
of Schubauer and Skramstad (ref. 1). They made acoustic measurements along the 
test section centerline using a conventional microphone and a ribbon microphone. 
The latter responds to velocity fluctuations, and their data show a single large 
maximum in acoustic pressure occurring at the location where the fluctuating 
velocity is a minimum. They interpreted this result as showing the presence 
of a low-frequency standing acoustic wave in the test section. 

Reflections From An Open-Ended Duct 

The strength of a reflected plane wave depends upon the nature of the 
reflecting medium and the amplitude, frequency, and angle of incidence of the 
incident wave. In the present section interest is focused on plane waves 
normally incident upon a reflecting medium, and because the test section in 
Shapiro's experiment was open ended, the real concern is with waves reflected 
from the open end of a duct. This is a complicated problem but solutions do 
exist. 

In analyzing reflections, acousticians frequently work with quantities 
called impedances. Different impedances have been defined for different purposes, 
and the terminology is not quite standard. In a general sense, impedance is 
ratio of the force, due to acoustic pressures, to the particle velocity. When 
working with electro-mechanical radiation devices, the interest is often in 
the acoustic forces on the device, and the ratio of the force to velocity is 
termed the mechanical or radiation impedance 2 . The specific acoustic 
impedance, &, is defined as the ratio of acoustrc pressure to particle velocity. 
It can be considered specific impedance becausE it is the force-to-velocity 
ratio per unit area. The acoustic impedance Z is defined as the ratio of 
acoustic pressure to volume ve&ocity, where, for a duct with cross-sectional 
area S, the volume velocity V is e s. The acoustic impedance is thus the 
specific acoustic impedance divided by the area. The terminology is confusing, 
for one might expect the specific acoustic impedance to be the acoustic 
impedance per unit area, but it is just the opposite; acoustic impedance is the 
specific acousgic impedance per unit area. The relationship among the quantities 
is Z = 2s = zs2. The term impedance arises from the analogy of volume 
velocrty to electric current and acoustic pressure or force to voltage, and of 
course the ratio of voltage to current is called the impedance (the reciprocal 
of impedance, admittance, is also used in acoustic work). As may be seen from 
eqs. (16) and (17) the specific acoustic impedance, $/a, of a plane progressive 
wave is pc, a real quantity. The product pc occurs so frequently that it has 
been given the name of characteristic impedance, a quantity which is characteristic 
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of the medium and independent of acoustic wave type or condition. So many 
impedances certainly provide an impediment. Impedance is intuitively an 
appealing quantity in reflection analyses, for generally, the greater the 
difference in impedance at a reflection boundary, the greater the intensity 
of the reflected wave (after all, no reflected wave would be expected at a 
junction if there were no change in resistance or impedance across it). At 
reflecting surfaces the pressure and volume velocity are continuous and there- 
fore so is the acoustic impedance. The continuity of acoustic impedance 
provides the boundary condition which allows the transmissions and reflections 
to be analyzed. 

Consider next what happens at a junction where the acoustic impedance 
changes. A plane wave is assumed to be normally incident at the junction. A 
reflected wave occurs and for the analysis let the incident and reflected 
plane waves be represented, respectively, by 

P^i 
= ;i ei(kx-wt) 

e -i(kx+wt) 

These equations are appropriate because frequency is conserved in the interaction. 
For plane progressive waves the particle velocity is $/PC and for a duct of 
cross-sectional area S, the volume velocity, V, is s p^/pc. The volume veloc- 
ities of the incident and reflected waves are therefore 

ij =- pi 
i PC/S 

-cr 
Gr = - 

PC/S 

where, for the reflected wave, the particle velocity is negative for a positive 
pressure. 

From the definition, the expression for the acoustic impedance is 

P^i + P^r ;zm vi + v r 

It is clear from the preceding study of two standing waves that 5! will vary 
from point to point. In terms of pressure, 2 becomes 

or 
h ikx +Ge -ikx 

ikx -B^e -ikx 

Without loss of generality, the origin of the coordinate system may be 
located where the change in impedance occurs. Denote the acoustic impedance 
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here by ^z 0’ and at x = 0, 

which gives 

6 
z. - F 

7C= 
A 2 +pc 

0 S 
(22) 

Equation (22) will be applied to the open-end duct problem, but before 
doing this it is instructive to apply it to two typical examples. Consider first 
the case of a constant area duct in which the impedance change is due to a 
fluid change (e.g., air and water in a vertical duct). In addition to the 
reflected wave there is a transmitted wave. In the transmitting medium only 
the transmitted wave is present and hence the acoustic impedance is that for 
a plane progressive wave. It should be pointed out that while pc/S in 
equation (22) is the acoustic impedance of a plane progressive wave, it is 
not the acoustic impedance in the medium where the incident and reflected 
waves propagate precisely because there are two waves present. Using sub- 
scripts 1 and 2 to denote, respectively, the properties in the incident and 
transmitting media, equation (22) shows that 

(23 ) 

Equation (23) shows that G/i depends only on the characteristic impedances of 
the two fluids. If P2C2 ” Ply’ e/z = 1 and thus the amplitude of the reflected 

waves equal that of the incident wave and there is no phase angle change. When 
the characteristic impedances match there is no reflected wave. When 

p2c2 << PIC1’ the wave amplitude ratio becomes g/8 = -1 = 1 ein, and it is 

seen that the amplitudes of the two waves are again equal but there is a 180' 
phase angle difference. 

For the second example, consider the case of a single fluid in a pipe 
which kas an abrupt area change. In this situation equation (22) gives, 
with Z 0 = PC/S2’ 

I? sl - s2 
x = s1 + s2 

If s1 = s2 there is, of course, no reflected wave. If Sl >> S2, the case of 

a pipe almost SoFpletely capped, the expected result occurs, namely, g/i = 1. 
If s1 << s , B/A = -1 and again the equal amplitude 1800 phase shift situation 
exists. Thg s1 << s 

J? 
situation is equivalent to an open-end condition, and 

this is essentially t e condition of Shapiro's test section. This result 
states that the wave is totally reflected and that no energy leaves the end 
of the duct. This result is essentially valid only for the low-frequency case 
when the wavelength of the incident wave is much greater than the diameters 
or perimeters of the ducts involved. Some textbooks do not make this clear. 
It has been assumed here that the plane waves remain as plane waves at the 
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location where the acoustic impedance change occurs, and this is a valid assump- 
tion for the long wavelength case. When the wavelength is comparable to the 
duct cross section dimensions, diffraction effects occur; the wavefronts become 
distorted and the acoustic pressure is not uniform across the duct. The in- 
adequacy of the preceding results for high frequencies is rather dramatic. 
For the case of wavelengths which are small in comparison to the duct diameter, 
the method of geometric or ray acoustics is appropriate. In this method signals 
are considered to propagate along ray paths and the wave strengths are determined 
from energy conservation along ray tubes. If there are no mean density gradi- 
ents or physical obstructions, the ray paths are straight lines. Thus, for 
very high frequencies and s2 >> s 
directly into the second medium an 

a (or just S2 > Sl), all ray paths lead 
there is no change in the ray tubes. The 

effective area of the wave remains at s1 and there is no change in wave 
strength and no reflected waves are generated. This result is just opposite 
of the previous conclusion concerning this case (i.e., for S >> s no energy 
leaves, all is reflected). So again, equations (23) and (24)2are a;propriate 
for the case where the wavelength is much greater than the duct diameter. 

Equation (22), however, is still of use if an appropriate acoustic impedance 
for an open duct can be determined. This is accomplished by adopting the 
solution from a classical problem in acoustics, the radiation of sound from 
a piston in an infinite baffle (i.e., from a piston moving in and out of a wall 
or a flanged pipe). The radiation impedance is known for such a case, and 
this result can be used here because in an open-ended duct the air at the 
open end may be considered, for long wavelengths, to be a piston of zero mass, 
radiating some of the energy into the open and reflecting some back. The long 
wavelength condition is involved because for this case the air does retain 
plane wave motion with a uniform pressure distribution, and the piston calcu- 
lations show that for long wavelengths the pressure on the face of the piston 
is uniform and that the piston area radiates as a whole (ref. 47, pp. 386-387). 
For a short wavelength case, as will be shown shortly, the piston results 
do agree with what would be expected from geometric acoustics. Thus for the 
short and long wavelength conditions the piston model is an appropriate one; 
for intermediate wavelengths the situation is less clear, but the model is 
probably not a bad one. 

One of the approaches to solving the piston problem is to replace the piston 
area with an array of simple sources, where the sources are considered to 
represent differential areas of the piston surface. A monopole is a pulsating 
sphere, and a simple source is monopole whose radius is small compared with 
the pulsating signal wavelength. The sources are assumed to oscillate in 
phase and with the same frequency with which the piston would vibrate. The 
acoustic pressure at any point in the medium is the superposition of the acoustic 
pressures from all of the simple sources. The problem thus becomes one of 
evaluating an integral. The signals from the sources are spherical waves. 
(Spherical waves have not been discussed here, but they usually are the subject 
of a chapter in most acoustic textbooks). 

The resulting superposition or interference pattern shows that at low 
frequencies (wavelengths considerably greater than the, piston radius) the 
acoustic pressure is uniform in all directions in front of the piston. At 
higher frequencies cancellations and reinforcements produce an acoustic pressure 
field which is more intense along the axis of the piston. At very high 
frequencies nearly all of the energy is beamed in the axial direction, a result 
consistent with ray acoustics. When the acqustic pressures on the face of the 

56 



piston are integrated to determine the net force on the piston, the result is 

2Jl(2kr) 2Kl(2kr) 
2kr +i 2kr I 

where V is the amplitude of the piston velocity, r is the radius of the 
piston, OS the area, and Jl and K are Bessel functions of the first and 
second kind, respectively. The ra iation impedance, the ratio of force to A* 
velocity, is 

2Jl(2kr) 

2kr +i 

2Kl(2kr) 

2kr 1 (25) 

This result holds for circular ducts and rectangular ducts if the sides are 
nearly equal ig length (see ref. 47, p. 384 and 393). 
impedance is Z /S2, 

Recalling that the acoustic 
one can thus obtain from equation Rbi the value of the 

acoustic impeda;ce which we can substitute into equation (22); namely; 

2Jl(2kr) 

2kr + i 

2Kl(2kr) 

2kr 1 (26) 

The real and imaginary terms in the brackets are sometimes called, respectively, 
the radiation resistance, R, and radiation reactance, X, and are tabulated in 
some texts (e.g., ref. 31, table IV and ref. 47, table IX). Substituting 
equation (26) into (22) gives the desired result for an open tube 

2 Rr(2kr)-1 + iXr(2kr) 

x = Fr(2kr)+l + iXr(2kr) A 

The magnitude and phase angle of g/i are therefore 

and 

4 = tan -1 2xr 
R2 2 

r -1 + Xr 

The present author has found that B/A is described within _+_ .04 by 

! 1 0 < w < 0.3 - 
B w-o.3 -- -= A e 2.7 0.3 < w < 9 - 

e- $ 9<w - 

where w = 2kr. 
31): 

For large and small values of w, Rr and Xr 

R,(w) " 1, X,(w) = & ; w>>l 

W2 Rr(w> z8, x (w) =$; WC1 r 

(27) 

(28) 

(29) 

behave as (ref. 

(30) 
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Substituting equations (30) into equations (27) and (28) shows that for the long 
wavelength case (small w) B/A -f 1 and (I -+ 1800, and this corresponds to the 
result obtained from equation (24). For the short wavelength case B/A -f 0 
and this corresponds to the geometric acoustic result. Kinsler and Frey (ref. 
31, p. 183) show that the radiated power for the high frequency case is the 
same as the plane-wave power that would be radiated by piston into a tube 
of radius r. This is consistent with the idea that the ray paths emerge 
axially out of the tube with no change in ray-tube area. 

The preceding results are for a duct or pipe whose open end is flush 
with a wall or has a large flange on the end. For an unflanged pipe there is 
an even greater impedance mismatch at the open end due to the larger solid 
angle of radiation; the radiated power is less and the amplitude of the reflected 
wave is greater. Some impedance curves for the unflanged case are presented 
by Morse and Ingard (ref. 47, p. 472). Kinsler and Frey (ref. 31, p. 200) 
state that for 2kr < < 1, both theory and experiment show that for the un- 
flanged pipe 

k2r2 ;+ (-- 
4 + 0.6 ikr) 

Transverse Modes 

The discussion is now broadened to include waves which undergo reflections 
from the side walls as they propagate down a rigid-walled duct with rectangular 
cross section. The discussion will bring out the concepts of transverse modes 
and cutoff frequencies. Consider first the case of waves whose reflections in- 
volve only two walls, that is, waves whose wave normals lie in the x-y plane, 
where x is the distance along the length of the duct. Let h (the height) be 
the separation distance between the reflecting walls. The wave equation in this 
case is 

2E+ &=L& 
ax2 ay2 c2 at2 

The solution should represent a traveling wave in the x direction and, because 
of complete reflections at the rigid walls, a standing wave in the y direction. 
The solution is thus expressed as 

p^ = i f(y) e i(kxx-wt) 
(32) 

The boundary condition on the acoustic pressure is that the gradient normal to 
a wall is zero. This condition comes from Euler's equation, which for small 
velocity fluctuations is 

+ 
p $+vp=o 

+ 
where v is the velocity perturbation, and the fact that the normal component 
of velocity vanishes at the wall. Substituting eq. (32) into eq. 01) and 
applying the boundary conditions yields the solution to, equation (31) 

6 = i cos(kyy) ei(kxx-wt) (33) 

where 
2 

ky= I(;) -k;l 
4 

(34) 
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and 

k = 
Y y, n = 0, 1, 2, . . . (35) 

This solution can be decomposed into two progressive plane waves 

+ ei(kxx+kyy-wt) 
I 

(36) 

Each of these waves represents a plane wave and the surfaces of equal phase 
are given by 

kxx + kYY = ox 
or 

k k 
xx+ k -2 y=;t (37) 

where, from equation 8 4J , 

The normal form for an equation of a plane with distance d from the origin is 

(38 > 

where n and n are the direction cosines of the normal to the plane. Com- 
parison gf equatixns (37) and (38) shows that kx/k and k /k are the direction 
cosines of the component progressive plane waves. The velozity of propagation 
of the surfaces of equal phase is obtained by differentiating the right-hand 
side of eqs. (37) and (38) with respect to time, giving 

The velocity of the component progressive waves is the sound velocity, as one 
would expect. The angle of the direction of propagation of the wave normals 
with the y-axis is given by + cos-1 k /k and hence one term of eq. (36) may 
be considered as the incidens wave+ andYtQe other as the reflected wave. It 
should be noted that it is k = kxi + kyj, not the wave velocity c, that is 

the mathematical quantity having a vector character which specifies the 
direction in which a wave is propagating. 

Equation (35) is the characteristic equation of the duct. The various 
values of n defines the modes of the duct and the discrete y wave-number 
spectrum. Equations (33) and (35) show that the mode number, n, corresponds 
to the number of pressure nodal planes existing between the two reflecting 
walls. For n = 0 there are no nodes and this corresponds to the axial plane 
wave case. Besides the necessity of meeting the boundary conditions, the 
characteristic equation can also be considered to arise out of a wave inter- 
ference condition. Since k = k cos0, where 8 is the angle of the wave 
normal from the y axis, eJ (35) may be written as 

59 



n7T nh co& = E = 2h (39) 

This shows that for a given free-space wave number k, only certain directions of 
propagation are possible and these depend on n. A physical significance of 
eq. (39) is that waves obeying this relationship constructively interfere with 
multiple reflections. Equation (39) is the condition that the path length of 
an element of a wavefront be an integral number of wavelengths, X, after two 
reflections (thus giving constructive interference). This may be seen with the 
aid of figure 22. The figure shows a portion of a wavefront and a phase path 
from A to B involving two reflections. It can be shown that the path length 
is 2h cos.0, and equating this to nX gives eq. (39). The characteristic 
equation is therefore, as one would expect, a coherence condition for multiple 
reflected wave fields. 

From equations (34) and (35) 

kx = + [k2 - (& 

For a particular non-axial mode, if k < y the value of kx becomes imaginary 
and hence $ becomes 

p^ = ii cos( !E.Y h > 
+ 

e 
ls,x ,iwt 

This wave disturbance is no longer periodic in x but decreases exponentially. 
These waves, which quickly die out, are sometimes called evanescent waves. 
Such terms are needed to satisfy boundary conditions and it is near the 
boundaries of irregular regions that evanescent waves are found. For k > nnr/h 
the value of k is real and the disturbance is a true propagating sound-field. 
In terms of fre&ency, the condition is w 1 nnc/h, and the cutoff frequency 
is defined as 

n7rc w = - 
C h 

For a given mode, the frequency must be greater than w in order for that 
transverse mode to propagate. In terms of wavelength, Ehe condition for a 
transverse mode is X < 2h/n and hence for X > 2h, no sustaining oblique 
waves can exist. This is the basis for an earlier statement that one method 
of generating plane waves was to use a low-frequency source in a rigid tube. 
For the low-frequency case of X > 2h, all oblique waves die out leaving only 
an axially propagating plane wave, the zeroth or fundamental mode. The 
fundamental mode can always propagate unattenuated, and the discussion below 
is for n > 1. - 

For a given mode, the angle of propagation of the sound waves for various 
frequencies can be expressed in terms of the cutoff frequency as 

-1 n7rc 
0 = cos c = cos-l $ (40) 

As the frequency, W, is increased from 0, no transverse modes are set up until 
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f.!J=W for the first mode. At w = W = rc/h, 8 = 0 and the situation is that 
of p&e waves bouncing back and forthCat normal incidence to the walls. As 
the frequency is increased the direction of propagation moves toward the axis 
of the duct as shown in figure 23. For all frequencies between the cutoff 
frequency of the first mode and that of the second mode, only first mode 
propagation can exist (the zeroth mode can always exist). At the cutoff 
frequency for the second mode, a transverse resonance can set in, and as w 
increases the direction of propagation of the second mode waves become 
increasingly axial. As long as the frequency is less than the cutoff frequency 
for the third mode, only first and second mode sound waves propagate, and 
the maximum value of 8 is limited to cos-1 (WC /y.J , where the subscripts ? 

5 and c 3 refer, respectively, to the first and tiird3mode cutoff frequencies. 

The phase velocity is the velocity of the phase pattern in a given direction. 
It is the velocity with which a point of intersection of the wave front with 
a given axis travels. Letting be the phase velociYy in thS direction 
of the channel, 'ph 

w w C 

Cph = 5 = k sine = - sin6 

and it is seen that the phase velocity varies from ~0 at the cutoff frequency 
(the wavefronts are parallel to the walls) to c at the high frequencies, 
where the wavefronts are nearly perpendicular to the duct axis. Thus, for 
frequencies below nc/h only the fundamental mode propagates without attenu- 
ation and it propagates at speed c. As w is increased above nc/h the 
first higher mode also propagates with zero attenuation, though at a phase 
velocity higher than c. As w is further increased successively higher 
modes can be transmitted along the duct, and the phase velocity of each 
decreases, coming closer to the constant value c of the fundamental mode. 

+ 
The group velocity, is the velocity in which energy is transported and 

is determined from %' 

am C =- 
gj ak. 

J 
In the present case, the energy transport is in the x direction and its velocity 
is given by 

ati =k C2 
cgx= akx x --ii- = c sine 

Thus, c 

g'f 

is zero at a cutoff frequency, an expected result since the wave paths 

are norma to the walls, and there is no energy flux in the x direction, and 

Cgxr c 
at the higher velocities where the wave paths are nearly axial. 

The preceding results can be generalized to the case where all four walls 
of the duct are involved in the reflection process. The solution to the three- 
dimensional wave equation becomes 

p^ = 6 cos(kyy) cos(kZz) e i(kxx-wt) 
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and there are now two characteristic equations 

ky = y n = 0, 1, 2, . . . 

kZ = T m = 0, 1, 2, . . . 

where w is the width of the duct, that is, the wall separation distance in 
the z direction. Furthermore, 

% 
kx = - (kf + k;) 

I 

or 

kX 
will be real only when 

fA2 2 > <q + (y2 7-w 
and hence the cutoff frequency is given by 

% 

w 
C 

= CT (;)2+ (;) 
[I ‘1 

(41) 

(42) 

As expected, the cutoff frequency depends on the dimensions h, w of the duct 
cross section and on the indices m, n of the particular mode. There are n 
nodal surfaces (where p is zero) parallel to the y walls and m parallel 
to the z walls. The previous discussion concerning wave angles and phase 
speeds is relevant and can be generalized (e.g., the angle of incidence is 

The solutions are orthogonal and complete and hence any arbitrary wave can 
be represented by a unique superposition of these solutions. Near locations 
where the boundary conditions change, evanescent waves can be expected to exist 
and be an important part of the solution, but away from these regions only the 
unattenuated wave modes remain significant. 

If the sound source in a duct with rigid walls is a rigid piston oscillating 
with frequency W, then only the fundamental mode is excited (plane waves 
propagating axially). If the piston is not perfectly rigid and the oscillation 
velocity is a function of y and z, some of the higher modes at this 
frequency will be excited. 

For a simple source (a pulsating sphere) in a rigid duct the sound field 
is of course modified because the radiated energy is channeled along the duct 
instead of radiating in all directions. For high frequencies and for positions 
close to the source, the behavior of the sound field is similar to that in 
free space. For wavelengths of the same size as the duct, the radiated pressure 
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is appreciably different from the free-space conditions, even in regions close 
to the source. As in the case of the piston source, the solution is expressed 
in terms of the duct modes and the y, z location of the source. The 
radiation resistance (the real part, the term responsible for radiated power, 
of the radiation impedance) of the source depends upon the frequency and 
its proximity to a cutoff frequency. In a rectangular duct the calculations 
(ref. 47) show that as the frequency increases past a cutoff frequency the 
resistance takes a sudden jump and then follows a subsequent and slower decay. 
The minima which each decay reaches before reaching the next cutoff (more 
appropriately, cut-on) frequency increase with increasing frequency inasmuch 
as the steps get closer together. At the higher frequencies the averaged 
values approaches the resistance behavior of a simple source in free space, 
a quantity which varies as the square of the frequency. 

The previous discussion concerning reflections from open and closed ends 
of ducts and from locations where abrupt area changes occurred was restricted 
to the fundamental mode. The reflection of transverse modes from such boundaries 
is a complicated process because the reflected and transmitted waves may con- 
tain modes other than those of the incident ones. If the duct is semi-infinite 
and terminated at x=0 with a plane wall of uniform acoustic impedance, the 
modes will not mix on reflection; if an nth mode wave is sent from - ~0, an 
nth mode wave will be reflected back (ref. 47, p. 523). But if the impedance 
is a function of position on the wall, or if there is some other nonuniform 
obstruction at x = 0, a single mode sent from - m will be reflected as 
several modes. The problem of reflections of transverse modes from the open 
end of a duct does not appear to have been examined in textbooks. One is thus 
bereft of guidance on this particular problem. The textbook of Morse and 
Ingard (ref. 47) may be consulted for information on other types of reflections 
of transverse modes. 

Other Standing Waves 

Equations (19) and (20) describe the rms values of the acoustic pressure 
and velocity in a standing wave produced by two progressive plane waves of the 
same frequency traveling in the opposite direction. The equations are obviously 
applicable to the standing wave along the axis of a duct produced by a funda- 
mental mode wave and its reflection. The wave numbers in this case are equal 
in magnitude and opposite in sign. The interest here is in a generalization 
of these equations. With the transverse waves, standing waves in the transverse 
directions are set up due to the fact that waves of the same frequency have 
wave number components of the opposite sign in the transverse directions. 
It is important to note that if transverse modes propagate in both the upstream 
and downstream directions, then, like the fundamental mode case, standing 
wave patterns are created along the duct. As discussed at the beginning of 
the report, it is not necessary for waves to travel in opposite directions 
to produce standing waves. The necessary conditions for a standing wave pattern 
are that the constituent wave families have the same frequency and travel in 
nonorthogonal directions. If the waves travel in the same direction they 
must have different wave numbers, i.e., different phase speeds. The interest 
here is in the standing wave patterns set up along a duct by upstream and 
downstream traveling fundamental and transverse mode waves of a given frequency. 
For a given frequency, eq. (41) shows that the wave number component in the 
x direction, k depends on the modal numbers and that, in general, each mode 
has its own va& of k . Because of the differing wave numbers, each pair of 
modes, including downst?eam-downstream pairs and downstream-upstream pairs, 
may be considered to set up standing waves along the duct. Of course the 
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amplitudes of these standing waves would depend on the amplitudes of the 
individual modes involved and on the y, z coordinates (e.g., there would 
be no standing wave along a mode's nodal plane). The results also depend 
upon which acoustic variable is being considered. Since pressure is a 
scalar quantity and velocity is vectorial, the standing wave patterns for 
each will differ. Thus microphones and hot-wire anemometers will not show 
identical patterns. 

Later there will be a need for an expression giving the wavelength of the 
standing waves. This is easily obtained. Suppose a signal ^s is composed 
of two traveling waves, with 

The rms value of the signal is 
A $Ag = @A - @g 3 

"s &xand hence, with R = B/A and 

(1 + R2) + R cos[(a-6)x + A@,1 

This equation is a slight generalization of eqs. (19) and (20). Since the wave- 
length is HIT divided by the wave number, the wavelength of the pattern is 
X = 2n/(a-6). Letting a = k 

x1 
be the wave number component in the x 

direction for a downstream propagating mode, and 6 = + k 
x2 

be the component 

for a different downstream (+> or an upstream (-) propagating mode, the wave- 
length becomes 

27r 
k -k waves traveling in same direction 

x1 x2 
A= 

I 

27-r (43 > 
k +k waves traveling in opposite directions 

x1 x2 

Obviously waves traveling in the opposite direction produce standing waves with 
shorter wave lengths. Again, the k 's can be from either the oblique or 
fundamental modes; they need only beXfrom fields of the same frequency. If 
the waves reflected from the open end of a duct are weak, then it is entirely 
possible that the strongest standing waves in the duct could be due to the 
waves traveling in the downstream direction. 

Attenuation 

The subject of attenuation is a difficult one, and, like the problem of 
the reflection of transverse modes, very little quantitative information will 
be presented. Up to this point, the sound waves have been considered to be with 
no losses and the reflecting walls have been considered as perfectly rigid. 
Sound is absorbed by air and of course losses occur at real reflecting surfaces. 
Losses in the medium may be divided into three basic types, viscous losses, 
heat conduction losses, and losses associated with molecular exchanges of 
energy. The viscous and heat conduction losses are often referred to as the 
classical types of sound absorption in fluids because they were analyzed in the 
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mid 1800's. The absorption of acoustic energy is associated with the fact 
that the pressure and density changes are truly not in phase, even for a 
plane progressive wave. Following Kinsler and Frey (ref. 31, p. 219), the 
time lag of the density change relative to the pressure change depend upon 
a characteristic or relaxation time required for (1) viscous stresses as- 
sociated with relative fluid motion to tend to equalize the fluid velocities, 
(2) heat conduction to occur between high pressure (high temperature) and 
low pressure (low temperature) regions in the fluid, or (3) molecular 
energy changes among the different modes of internal energy (energies of 
molecular translation, rotation, and vibration) to occur. The phase lag between 
the pressure and condensation result in net work done on the'fluid and a 
corresponding loss in acoustic energy. The attenuation coefficients for the 
classical forms of dissipation have been shown to be proportional to the 
square of the frequency. Molecular absorption in air is a maximum in the lower 
ultrasonic and audible frequency range, and is appreciably affected by the 
relative humidity. In air, it is likely that in most problems molecular 
attenuation will be the dominant mode of attenuation. In general, classical 
attenuation can be taken as a lower limit to the attenuation, and in non-dry 
air in the audible frequency range, molecular attenuation accounts for 90%-99% 
of the losses. Over the short distances involved inside wind tunnels, sound 
absorption in the free-stream can be neglected. 

Even in the case of rigid walls there are losses at the walls in the 
acoustic boundary layer. The acoustic boundary layer, like the usual flow 
boundary layer, is the result of the no-slip condition at the wall and viscous 
effects. A number of authors (refs. 31, 40, 48 and 49) state that thickness 
of the acoustic boundary layer is given by J2vlw , where v is the kinematic 
viscosity; Meyer and Neumann (ref. 48. p. 106) state that the velocity amplitude 
distribution is given by 

a(y> = 1 _ .-y - 

% 

where ua, is the particle velocity amplitude well outside of the boundary 
region. Taking the real part of this equation gives 

U 
-=1-e -y v477iY 
%3 

cos y Jw/2v 

Although the result is for the case of no mean flow, for small amplitudes the 
relation also describes the perturbation introduced to the flow when the flow 
is present (ref. 4). The velocity fluctuation 'amplitude, unlike in the flow 
boundary layer, does not approach the free field conditions monotonically, but 
under oes a damped oscillation. 

sg 
The wavelength of the oscillations is 

2lT 2v/w , and the peak amplitude overshoots the far field amplitude by about 
7% at y =: 2.4m . u/UC0 first reaches 0.995 at about y = 1.55- 
and hence when comparisons are made with flow boundary layer thicknesses 
(where the thickness is sometimes taken to be the location whose u/Uoc) is 
0.995) the acoustic boundary layer thickness should be taken as 
6~= 1.5542v/w . The losses that occur in the viscous boundary layer because 
of friction and heat conduction attenuate sound waves in ducts. It has been 
found (e.g., ref. 31, p. 241) that in tubes the attenuation constant, that 
i%the value of a in the amplitude decay e-CXX is proportional to 
Julr , where r is the tube radius. This attenuation is usually important only 
in small tubes at high frequencies (e.g., the attenuation is only 0.2 dB/m 
for a 1 kHz sound field in a 5-cm radius tube - ref. 48, p. 111). For most 
wind tunnel situations the acoustic boundary layer losses would not be 
significant. 
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While the losses due to the acoustic boundary layer may be small, significant 
losses are likely to occur at the walls due to the fact the walls are not 
perfectly rigid and energy is transmitted into them. The reflection of sound 
waves from solid surfaces can be a rather complicated matter and there is no 
simple method of analysis available. Complications arise partly because 
solids have the ability to sustain shear stresses and therefore can propagate 
shear or transverse waves in addition to compression or longitudinal waves, 
and the internal elastic structure of various solids differ. In addition, 
many walls are built-up structures having laminations and cavities. Surfaces 
which are constructed to absorb sound energy are usually porous surfaces, 
and in these cases not only is there elastic compression of the solid but 
there is also fluid moving back and forth in the voids. 

In unbounded solids there are only two types of sound waves which can be 
propagated: (1) Compressional, or longitudinal waves, in which particles move 
in the direction of propagation. These waves have the highest propagation 
speed. (2) Shear or transverse waves, in which the particles oscillate in 
the transverse direction. The speed of these waves is slower than the 
compression wave speed, and the ratio of the two speeds depends only on 
Poisson's ratio. In ducts it is often the case that the thickness of solid 
walls is small in comparison with the wavelength of the compression wave. 
In this situation the wall or plate can have a great many propagating waveforms 
(ref. 48). Extension waves are those having a symmetric mode in which par- 
ticles on the upper and lower surfaces move in phase. The particle motion is 
predominantly longitudinal but an additional transverse component due to con- 
traction of the transverse dimension will also be present (Poisson's ratio is 
thus important). The phase speeds can be much smaller than the compression wave 
speed in an unbounded medium. The speed depends on the wavelength as the 
wavelength approaches the thickness of the plate. Flexural waves propagate in 
an antisymmetric mode. The particle motion is predominantly transverse, but 
some longitudinal motion occurs due to rotation of the cross section about the 
transverse axis. The wave speed generally increases with frequency. Surface 
waves, called Rayleigh waves, can be propagated on the surface of solids whose 
dimensions are large in comparison with A. The oscillations have longitudinal 
and transverse components and are restricted to a surface layer of about x 
thickness. The speed is somewhat lower than the speed of shear waves. A plate 
acts in a fashion as a wave-guide. The extension and flexural waves may be 
considered as zeroth or fundamental mode propagation. As the product of frequency 
and plate thickness increases various symmetric and antisymmetric modes cut 
on. These propagate along the plate with phase speeds which, with increasing 
frequency-thickness product, approach that of the Rayleigh waves. 

Sound in a porous material is damped by viscous motion. The acoustic 
properties of porous materials are characterized to a large extent by its flow 
resistance, a quantity which can be determined by a fluid flow experiment. 
Acoustic attenuation generally increases with flow resistance and decreases 
with increasing frequency (ref. 48). 

Kinsler and Frey (ref. 31) divide the sound reflection process into three 
categories, depending on the waves transmitted into the solid. Thus, waves 
transmitted into solids may be: (1) refracted so that it propagates effectively 
at right angles to the surface, (2) refracted in a manner similar to a fluid- 
fluid boundary, and (3) refracted into longitudinal waves traveling in one 
direction and shear waves traveling at a lower velocity in a different 
direction. Type (1) refraction occurs for the so-called "normally reacting" 
or "locally acting" surfaces. In such materials the motion of various parts 
of the surface are not strongly coupled, and the motion normal to the surface 
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of one portion can be considered dependent only on the acoustic pressure inci- 
dent on that portion and independent of the motion of any other part of the 
area. A honeycomb structure is an example of such a material (the velocity 
of compression waves through the fluid in the capillary pores oriented at 
right angles to the surface is much higher than that at right angles to this 
direction from pore to pore through the solid material of the structure). 
Many highly absorbing materials used in buildings appear to behave as locally 
reacting surfaces. Such interactions are rather easy to analyze because the 
waves are propagating normally into the surface. The interaction is completely 
characterized by the specific acoustic impedance, sn/p c 1 1' where ^z n = $/Gn 

and Q is the normal component of the particle velocity at the surface and 

plcl %e properties of the fluid. Since the normal component of the particle 
velocity is involved, the angle of incidence, 0, also enters into the result. 
2 may be frequency dependent and complex with Gn 
pqessure; gn = vn + i xm. 

not in phase with the 
For most solids vn > pl cl and one finds that 

there is some angle where the absorption is a maximum. For grazing incidence 
there is complete reflection. Often the angle of incidence for maximum 
absorption is closer to the grazing angle than normal incidence. 

Type (2) reflection is typical of a sea water and sand bottom reflection 
since the saturated sand behaves more like a fluid than a solid in its inability 
to transmit shear waves. In these interactions the angle of incidence equals 
the angle of reflection and Snell's law holds. If 
critical angle (measured from the normal) 

c >c2 there is a 
beyond whit ii no acoustic energy is 

transmitted into the second medium. Morse and Ingard (ref. 47) refer to this 
type reaction as one from a surface of extended reaction. In this situation 
the behavior of the surface at one point depends on the behavior at neighboring 
points. Instead of & the effective impedance of the surface is 
;,iiz, c2/cosB , where n’e 

which Depends on ?he 
is the angle of penetration of wave in the second 

medium'(via Snell's law). 
angle of incidence of the wave in the first 

Thus the degree to which the surface yield to the 
incident wave depends on the distribution of the incident wave; the surface 
is aware of the wave shape, so it is one of extended reaction. 

Meyer and Neumann (ref. 48, p. 53) present a short discussion of the type 
(3), or elastic solid surface reflection. They discuss the case of a longi- 
tudinal wave propagating in a solid striking a solid-air boundary at oblique 
incidence. A transverse as well as a longitudinal wave are reflected, and 
therefore at the boundary a mode conversion takes place (the extent of the 
conversion depends on the angle of incidence and Poisson's ratio). There are 
incident angles for which complete mode conversion occurs. For a transverse 
mode reflecting at the interface, the degree of mode conversion depends upon 
the angle of incidence and Poisson's ratio and also the angle of the plane of 
polarization of the transverse wave. Morse and Ingard (ref. 47, chapt. 10) 
discuss the coupling of wave motion of plates and that of the surrounding medium. 

Morse and Ingard have also examined some aspects of the problem of sound 
propagation in ducts with nonrigid walls. Their analysis was restricted to the 
case of locally reacting walls which were characterized by a specific acoustic 
admittance f3 = PC/~ = 5-io, where, as before, the specific acoustic impedance 
is p^/G and 6 is the normal fluctuating velocity component. Thermal and 
viscous"fluid effects could be included in an approximate manner by ascribing 
to the duct walls an additional specific admittance which varied with or 
depended upon the type of acoustic modal propagation in the duct. If the value 
of 6 due to the wall itself was not very small, then the additional admit- 
tances could usually be neglected, but if the walls were quite rigid, these 
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additional admittances could become the largest part of the effective wall 
admittance (but still negligible for the cases of interest here). If the 
impedance of the duct surface is purely reactive (5 = 0), the phase velocities 
of all modes including the.fundamental, are altered. In the rigid wall case 
only the oblique modes were dispersive (phase velocity in x direction 
depended upon frequency), and with nonrigid walls the fundamental mode is 
dispersive as well. If B has a real part as well, that is, if the conduc- 
tance 5 is nonzero, then in addition to the phase velocity changes there is 
also an attenuation of all modes. This situation makes the distinction between 
no attenuation above cutoff frequencies and no transmission below it become 
less clear. If, however, <<cl, the attenuation above cutoff is slight and 
below cutoff is great. 

A particular case of sound propagation in a duct was considered in which 
the walls perpendicular to the y axis had specific acoustic admittances 
which differed from the two walls perpendicular to the z axis. An approxi- 
mate solution was obtained for the practical case in which the walls were 
rigid enough so that 161 was small in comparison with the ratio between the 
wavelength of the sound in the duct and the perimeter of the duct. For the 
propagating modes, the attenuation factor was found to be the weighted mean 

th%! gine of &eZangle of incidence, sine 
(E 5 /h) + (E 5 /w) of the specific conductrcz ,f(thT;$ls, divided-by 

m7r 
where E =lwhen m=O and E =2 %en m>O. 

- (n.rr/kh)L 
Since 

to the f&damental mode, 
m = 0 corrisponds 

it is segn that the attenuation effects are felt 
only half as much for this mode. For the other modes, except for those in 
which the waves travels parallel to one pair of walls and hence one of the 
E'S is 1, the numerator is the same. The denominator is a maximum, equaling 
1, for the fundamental mode and therefore this mode is attenuated least. 
For the oblique modes the attenuation factor decreases with increasing 
frequency because of the denominator approaching one as the frequency increases, 
but because of the numerator these modes will have twice the attenuation as 
the fundamental. Near the cutoff frequency Umn + 0 and the attenuation 
factor becomes very large. 

When the nonrigid duct is fitted with a rigid oscillating piston which 
drives the air with a uniform amplitude TJ(y,z) = U,, one finds that higher 
modes are excited to some extent. This behavior is in contrast to that in 
a rigid duct where only the fundamental mode is excited by a perfect piston. 
When the driving frequency happens to be just greater than some cutoff 
frequency, the results indicate that this mode will have a large amplitude 
(but the attenuation is large as well). Morse and Ingard (ref. 47) warn.that 
measurements made in such a duct, if interpreted on the assumption that only 
the fundamental mode is present, will appear to produce erroneous results, 
since both the phase velocity and attenuation constants of these higher modes 
may differ, by fairly large factors, from those of the fundamental. 

The authors (ref. 47) also considered the case of walls with large admittances 
and presented a figure (p. 510) showing some results typical of a square duct 
with fairly "soft" walls (with acoustic impedance similar to a number of 
sound-absorbent materials). In the figure are plots of the variation with 
frequency parameter h/X (h/X 2 2) of attenuation coefficients and phase 
velocities for the fundamental (0, 0)-mode and a higher (1, 1)-mode wave. 
With increasing frequency the attenuation coefficient for the principal wave 
rises from zero to a maximum and then exhibits a monotonic decay. The coefficient 
of the (1, 1) wave shows a rapid drop from its cutoff value. It reaches a 
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minimum on par with the maximum value of the (0, 0) wave, and rises slightly 
and levels off. The phase velocity of the principle wave rises from about 
0.8~ at very low frequencies to a value very close to c. The phase velocity 
of the (1, 1) wave drops very rapidly from the cutoff condition to a value 
near c. It then begins to rise with frequency, obtaining a value of 
approximately 1.2~ at h/X = 2. 

Near the end of their discussion of sound propagation in ducts with 
yielding walls, the authors (ref. 47) state that it is obvious that the behavior 
of sound waves, even the principal wave, is quite complicated.when the admittance 
ratio of the walls is not small compared with unity. They further state 
that if one adds to this the fact that many porous acoustic materials have 
impedances that vary considerably with change in frequency, it becomes 
apparent that very few sweeping generalities can be made concerning the 
behavior of sound in ducts with highly absorbent walls. The present writer 
is staying out of the broom closet. 

Effects of Flow 

The effects of flow is the last topic for discussion in this review. The 
subject will be disposed of in a rather brief manner because it is so complex 
that few elementary aspects can be synthesized for presentation here. Most 
textbooks do not include discussions of flow effects (Morse and Ingard, ref. 
47 , have a chapter on the subject; Meyer and Neumann, ref. 48, also have a 
chapter, but it is very brief). A review of the literature is really needed 
here, but this is beyond the scope of the present study. Essentially every 
phenomenon which has been discussed so far, from plane progressive and standing 
waves to reflection and attenuation, is affected by flow in a duct. 

The reflection of plane progressive waves from the open end of a duct 
provides an interesting introduction to the discussion of the effects of flow. 
For the case of no flow, as discussed earlier, the reflection factor R, the 
ratio of the reflected to the incident wave amplitudes, decreased from a value 
of one at very low frequencies to a value of zero for very high frequencies. 
With flow in the direction of the open end, measurements (refs. 5&- 
these data are shown without credit in the Meyer and Neumann textbook, and 
ref. 51) reveal the reflection factor can be greater than one over a range 
of low frequencies. At higher frequencies the reflections factors increase 
with increase in flow Mach number. In ducts with sudden (step) enlargements 
reflection factors are found to increase with increase in Mach number (refs. 
36 and 52). The fact that reflection factors greater than one occur does 
not mean that more energy was reflected than was sent down the duct. Obvi- 
ously the flow field is involved, and in fact, the mathematical relations 
which express the conservation of energy have the flow velocity as one of 
the factors. When this is taken into account the data show that indeed energy 
is lost from the end of the tube in the reflection process. For waves 
propagating in a direction parallel to the flow direction, the energy intensity 
I is given by (ref. @. 

where M is the flow Mach number the + is used when the sound is propagating 
in the direction of the flow and the - when in the opposite direction. 
Thus, if a downstream propagating wave were to undergo a 100% reflection 
in a duct, the ratio of the reflected to incident amplitudes would be 
(1 + M)/(l - M), a quantity which is greater than one. If plotted in the 
form of R (1 - M)/(l + M) vs. frequency, the data at all Mach numbers lie 

69 



below 1.0 and, after reaching a peak value, decrease with increasing frequency. 
At all frequencies the data, when plotted in this form, decrease with in- 
crease' in Mach number, showing that more energy is being lost in the reflection 
process as the Mach number is increased. 

The phase velocity for waves traveling in the direction of the flow is 
c + U, where U is the flow velocity, and c - U when traveling against 
the flow. The respective wave numbers then become k'= k/(1 + M) and 
k- = k/(1 - M), where k is the wave number in the absence of flow. One 
of the consequences of this is that the nodal spacing in a standing wave 
produced by incident and reflected waves is reduced by a factor of (1 - M2). 
In the case of real fluids the dissipation rates will also be altered by 
the convective effect. If c1 is the attenuation rate, the loss per unit 
length in a stationary medium, the attenuation rate with flow becomes 
a/(1 + M). The convective effects on attenuation can also be observed for 
flow and sound passing over absorbent walls; the attenuation is least when 
the sound travels in the direction of the flow (as will be discussed shortly, 
refraction effects can alter this behavior). 

The transverse modes are also affected by flow. For the rigid wall case 
with inviscid flow (no boundary layers) the cutoff frequencies are changed by 
the factor /l i ML (ref. 34), where the minus sign is for downstream prop- 
agation. In duct flow one has to contend with the flow boundary layers on 
the walls as well as the mean flow. In some cases the boundary layer has been 
treated as an additional admittance to the wall. A most important effect of 
the boundary layer on the sound propagation is due to refraction resulting 
from the gradients in the flow. The boundary layers refract the sound waves 
toward the wall for downstream propagation and away from the wall for upstream 
propagation. The effects are stronger at higher frequencies and higher Mach 
numbers. The resulting acoustic pressure field across the duct can become 
quite nonuniform, and it becomes difficult to interpret the pressure distrib- 
ution in terms of individual modes. At high frequencies the wave propagation 
can be analyzed using geometric acoustics and certain energy invariants. 
It is generally found that the rays are bent more sharply towards the center 
of the duct in upstream propagation than toward the wall in downstream prop- 
agation (e.g., ref. 38 - in ref. 53 geometric acoustics was used to analyze 
the refraction of wind tunnel aerodynamic noise through boundary layers in 
supersonic flow). It may be noted that if the upstream and downstream ray 
tube areas are equal, the geometric acoustic method yields eq. (44). 

For ducts with nonrigid walls the situation is of course more complex. 
Morse and Ingard analyzed the case of uniform flow (no boundary layers) in a 
duct with walls having small surface admittances. 
was found to vary as l/(1 + M)2. 

The attenuation coefficient 
The effect of boundary layers on attenu- 

ation is most pronounced when the duct walls are of sound absorbent materials. 
At low frequencies, where the refraction is less, the convective effect 
dominates and the attenuation is less in the downstream direction. At high 
frequencies the refraction effect is dominant, and the channeling of energy 
towards the wall in downstream propagation results in greater losses for 
downstream propagation than for upstream propagation. The convection and 
refraction thus have the opposite effects on attenuation. Data showing this 
may be found in the textbook of Meyer and Neumann and the review article by 
Nayfeh, Kaiser, and Telionis (ref. 34). For the fundamental mode, increasing 
the boundary layer thickness leads to an increase in the attenuation in down- 
stream propagation and a decrease in upstream propagation. However, exceptions 
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to this trend have been noted in the higher modes (ref. 34). And while the 
expectation is that the fundamental mode is the least attenuated, calculations 
show that this need not be so (ref. 34). A fine place to begin on all of 
these matters is the review article by Nayfeh, Kaiser, and Telionis (ref. 34). 
It should be noted that at high speeds the boundary layers themselves can 
become a significant contributor to the duct sound field if they are turbulent. 
And finally, acoustic measurements become much more difficult to make when 
flow is present. 
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Figure l.- Complex representation of the traveling wave A e i (kx-wt+$) 
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(a) Representation of acoustic and TS 
traveling waves. 
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(c) Phase angle of wave sum; A = 0.5 A , 
ka = 10~1373, kts z 36.75 k;, +a = Jts= 0. 

(b) Representation of wave sum. Dotted 
circle is approximate path of the 
tip of the sum vector A. 
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(d) Amplitude of wave sum. 

Pigure 2.- Complex representation of the sum of two traveling waves of the same frequency and resulting spatial 
variation of phase angle and amplitude. 



(a) Complex diagram; x=10. TS wave 
vector not shown. 

(b) Complex diagram; x=20. TS wave 
vector not shown. 
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(c) Signal phase angle. 

Figure 3.- Diagrams showing the effect of an upstream propagating acoustic wave on 
the signal phase angle and amplitude. 
A1=l, A2=0.3, Ats=0.5. 

kl= -k2=6, kts=240, $j=$,=-90°, 1&=0, 
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(d) Signal amplitude- 

Figure 3.M concluded- 
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(a) Complex diagram; x=20. TS wave 
vector not shown. 

(b) Complex diagram; x=20. TS wave 
vector not shown. 
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(c) Signal phase angle. 

Figure 4.- Diagrams showing the effect of an upstream propagating acoustic wave 
on the signal phase angle and amplitude. 
except @2=900. 

Conditions same as in figure 3 
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Figure 4.- Concluded. 
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Figure 5.- Comparison of modeled freestream acoustic pressures with Shapiro's data. 
Pressures estimated from velocities using plane waves equation. Frequency of 
sound is 500 Hz. 
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Figure 6.- Variation of modeled acoustic pressure and velocity along tunnel centerline. 
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Figure 7.- Data from Shapiro, ref. 3, showing sound pressure 
level along tunnel centerline for a loudspeaker signal 
of 1000 Hz. 
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Figure 8 .- Low-Reynolds number boundary layer disturbance amplitude data and the modeled 
freestream disturbance level. 
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Figure 9 .- Comparison of low-Reynolds number boundary layer disturbance amplitude 
with modeled values. 
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Figure u.- Comparison of phase angle data with modeled values for distances 
less than 20 cm from leading edge. $1~=180~. 
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Figure 12.- Comparison of boundary layer disturbance amplitude 
with modeled values over complete Reynolds number range. $, = 180'. 
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Figure 13.- The effect of TS wave phase speed on the periodicity of the 
phase angle for conditions upstream of the stability theory neutral 
point. 
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Figure lb.- Comparison of phase angle data with modeled values for the x=15 to 75 cm range. 
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Figure 15.- The effect of the TS wave phase speed on the phase angle for 
conditions well downstream of stability theory neutral point. A linear 
growth rate of 183a/cm has been subtracted. 
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Figure 17.- Comparison of TS wave amplitude growth rates obtained from 
flat plate stability theory, from Shapiro's analysis of his data, 
and from present reevaluation of Shapiro's data. 
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Figure 18.- Variation with Reynolds number of the ratio of the TS wave amplitude to the sound 
field amplitude at the plate's leading edge as evaluated from Shapiro's data (ref. 3). 
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(a) Data and modeled amplitude variation with Reynolds number. 

Figure lg.- Comparison of TS wave amplitude and phase angle data with 
modeled values using a constant TS wave amplitude. 
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Figure lg.- Concluded. 
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Figure 20.- Comparison of nondimensional TS wave speeds as obtained from 
Shapiro's phase angle data with theoretical flat plate boundary layer stability values. 
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Figure 20. - Concluded 



-I 
2 
0 
H 

u-l 

z 
> 

El 
7 
0 
7 

. 30 

. 25 

. 20 

DATA ANALYSIS 

---- THEORY 

I; 
. 15 !r 

10 j: I I I . 
500 1000 1500 2000 

DISPLACEMENT THICKNESS REYNOLDS NUMBER 

Figure 21.- c omparison of nondimensional wave numbers as obtained from Shapiro's phase angle 
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